Chromium is present in different types of industrial effluents, being responsible for environmental pollution. Traditionally, the chromium removal is made by chemical precipitation. However, this method is not completely feasible to reduce the chromium concentration to levels as low as required by environmental legislation. Biosorption is a process in which solids of natural origin are employed for binding heavy metals. It is a promising alternative method to treat industrial effluents, mainly because of its low cost and high metal binding capacity. In this work the chromium biosorption process by
Sargassum
sp. seaweed biomass is studied.
Sargassum sp. seaweed, which is abundant in the Brazilian coast, has been utilized with and without milling. The work considered the determination of chromium-biomass equilibrium data in batch system. These studies were carried out in order to determine some operational parameters of chromium sorption such as the time required for the metal-biosorbent equilibrium, the effects of biomass size, pH and temperature. The results showed that pH has an important effect on chromium biosorption capacity. The biosorbent size did not affect chromium biosorption rate and capacity.