search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 6, No. 3, 2003, pp. 276-312
Bioline Code: ej03031
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 6, No. 3, 2003, pp. 276-312

 en Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology
Prasad, Majeti Narasimha Vara & Freitas, Helena Maria de Oliveira

Abstract

The importance of biodiversity (below and above ground) is increasingly considered for the cleanup of the metal contaminated and polluted ecosystems. This subject is emerging as a cutting edge area of research gaining commercial significance in the contemporary field of environmental biotechnology. Several microbes, including mycorrhizal and non-mycorrhizal fungi, agricultural and vegetable crops, ornamentals, and wild metal hyperaccumulating plants are being tested both in lab and field conditions for decontaminating the metalliferous substrates in the environment. As on todate about 400 plants that hyperaccumulate metals are reported. The families dominating these members are Asteraceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, Violaceae, and Euphobiaceae. Brassicaceae had the largest number of taxa viz. 11 genera and 87 species. Different genera of Brassicaceae are known to accumulate metals. Ni hyperaccumulation is reported in 7 genera and 72 species and Zn in 3 genera and 20 species. Thlaspi check for this species in other resources species are known to hyperaccumulate more than one metal i.e. T. caerulescence = Cd, Ni. Pb, and Zn; T. goesingense = Ni and Zn and T. ochroleucum = Ni and Zn and T. rotundifolium = Ni, Pb and Zn. Plants that hyperaccumulate metals have tremendous potential for application in remediation of metals in the environment. Significant progress in phytoremediation has been made with metals and radionuclides. This process involves rising of plants hydroponically and transplanting them into metal-polluted waters where plants absorb and concentrate the metals in their roots and shoots. As they become saturated with the metal contaminants, roots or whole plants are harvested for disposal. Most researchers believe that plants for phytoremediation should accumulate metals only in the roots. Several aquatic species have the ability to remove heavy metals from water, viz., water hyacinth ( Eichhornia crassipes check for this species in other resources (Mart.) Solms); pennywort ( Hydrocotyle umbellata check for this species in other resources L.) and duckweed ( Lemna minor check for this species in other resources L.). The roots of Indian mustard are effective in the removal of Cd, Cr, Cu, Ni, Pb, and Zn and sunflower removes Pb, U, 137Cs, and 90rate and accumulate metals in their shoots. Genes responsible for metal hyperaccumulation in plant tissues have been identified and cloned. Glutathione and organic acids metabolism plays a key role in metal tolerance in plants. Glutathione is ubiquitous component cells from bacteria to plants and animals. In phytoremediation of metals in the environment, organic acids play a major role in metal tolerance. Organic acids acids form complexes with metals, a process of metal detoxification. Genetic strategies and transgenic plant and microbe production and field trials will fetch phytoremediaition field applications.The importance of biodiversity and biotechnology to remediate potentially toxic metals are discussed in this paper. Brassicaceae amenable to biotechnological improvement and phytoremediation hype are highlighted.

Keywords
agricultural crops, aquatic macrophytes, biodiversity, Brassicace, cell cultures, hyperaccumulators, metals,ornamentals, remediation, tree crops, vegetable crops.

 
© Copyright 2003 by Universidad Católica de Valparaíso -- Chile
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2025, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil