The study investigated on medium optimization for production of exopolymer by a newly isolated bacterium,
Halobacterium sp.
SM5, using the mixture design and response surface method. The mixture experiment was designed by setting five parameters at the lowest and highest of concentrations: pseudo components design containing 0.15-0.25 glucose, 0.15-0.25 yeast extract, 0.35-0.45 MgSO
4·7H
2O, 0.1-0.2 vitamin casamino acid and 0.02-0.06 KCl. The results of the mixture design revealed that the effect of nutrients or elements on the exopolymer produced by the strain SM5 were in the order of MgSO
4·7H
2O > yeast extract > vitamin casamino acid > KCl > glucose, respectively. The suitable medium recipe for enhancement the exopolymer production was 7.43 g/l glucose, 12.38 g/l yeast extract, 17.33 g/l MgSO
4·7H
2O, 9.9 g/l vitamin casamino acid and 2.48 g/l KCl. The exopolymer to be produced by the strain SM5 was 2.25 g/l, which was higher than that obtained in the original medium (1.3 times). The yield of exopolymer was 2.13 g/l to be obtained in medium containing 7.43 g/l glucose, 11.37 g/l yeast extract, 22.28 g/l MgSO
4·7H
2O, 7.44 g/l vitamin casamino acid and 0.99 g/l KCl which was predicted by response surface methodology. However, under an experiment, the yield of exopolymer was 2.08 ± 0.0020 g/l.