en |
Optimization of polyethylenimine-mediated transient transfection using response surface methodology design
Fang, Qiangyi & Shen, Bingqian
Abstract
Response surface methodology was undertaken to optimize the polyethylenimine-mediated transient transfection of suspension cultured HEK 293-F cells. A total of 15 combinations were designed according to Box-Behnken design to identify the effects of DNA concentration, polyethylenimine concentration and incubation time on transient transfection efficiency. The highest integral optic density of green fluorescent protein presenting r-protein yield was accessed using a DNA concentration of 1.75 μg/mL, a polyethylenimine concentration of 10.5 μg/mL, and an incubation time of 11.8 min. Analysis of variance demonstrated that the experimental values fit well with a quadratic model. The RSM-optimized transient transfection resulted in greater production of human tissue prokallikrein (TproK) than non-RSM-optimized conditions: protein yield was 32.0 mg/L and the maximum viable cell density reached 3.57 x 106 cells/mL in a 5 L stirred-tank bioreactor culture.
Keywords
bioreactor, human tissue kallikrein, transient gene expression.
|