search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 13, No. 5, 2010
Bioline Code: ej10057
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 13, No. 5, 2010

 en Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis check for this species in other resources (Siebold & Zuccarini) and Paulownia fortunei check for this species in other resources (Seemann & Hemsley) grown in vitro
Ayala-Astorga, Gloria Irma & Alcaraz-Meléndez, Lilia

Abstract

We evaluated the effects of saline stress on soluble proteins, lipid peroxidation (TBAR), chlorophyll a, chlorophyll b, β-carotene, violaxanthin, and proline in Paulownia imperialis check for this species in other resources and Paulownia fortunei check for this species in other resources plants grown in vitro. When the propagated plants reached a determined size, they were transferred aseptically to WPM culture medium containing different sodium chloride concentrations (0, 20, 40, 60, 80, and 160 mM) and were sampled at 15 and 30 days. Proline content was determined at 30 days after transfer only. Protein concentration significantly decreased with the highest salt levels in P. imperialis compared to controls in which no sodium chloride was added. In both P. imperialis and P. fortunei, lipid peroxidation significantly increased at 15 days but decreased at 30 days. Chlorophyll a, chlorophyll b, β-carotene, and violaxanthin significantly decreased with exposure to higher sodium chloride concentrations at 15 and 30 days in both species. Proline content in P. imperialis significantly increased in plants grown in 20 and 40 mM of sodium chloride and decreased in higher sodium chloride concentrations. In P. fortunei, this measure significantly decreased proline content at all salt concentrations in plants exposed to all levels of sodium chloride compared to controls. Our results show that P. imperialis is more tolerant to salt stress at the salinity conditions tested.

Keywords
Paulownia fortunei, Paulownia imperialis, pigments, proline, proteins, salinity, TBARS, tissue culture.

 
© Copyright 2010 - Pontificia Universidad Católica de Valparaíso -- Chile
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil