en |
Vaccines for finfish aquaculture: What do we need to know to make them work?
Dixon, Brian
Abstract
Abstract Aquaculture still faces serious economic impacts due to the loss of animals to disease. A
conservative estimate of 5% losses due to disease means that the finfish aquaculture industry loses
over $1 billion annually on a global scale. One proven way to prevent costly disease outbreaks is to
vaccinate fish against common or known pathogens. Current vaccination schemes still result in losses,
however, and this may be due in part to vaccine design. Vaccines are currently designed using state of
the art knowledge of immune responses, which is based primarily on mammalian studies. Just how
applicable is this information to fish immunity and vaccine design, however? This review discusses
what is currently known for teleost fish about two key processes that drive immune response: antigen
presentation and cytokine regulation. In both cases many of the genes known to be involved have been
identified; in the case of cytokines recent genome projects have added to the total rapidly in recent
years. Most functional studies to date in these areas have focused on gene expression and mRNA
levels, due to a lack of available antibodies that are required for studies at the protein level. These
studies are confounded by the fact that in many cases the teleost equivalents of single copy
mammalian genes are duplicated and are regulated in very different ways. This suggests that vaccines
designed around mammalian immunological principles will not be as efficient as they could be. Future
research goals for fish immunologists should be to develop the antibodies required for protein level
functional studies in order to provide the true understanding of fish immunity that is required for the
design of finfish aquaculture vaccines that are truly effective.
Keywords
antibody; antigen presentation; cloning; cytokine; immunity; major histocompatibility complex receptors
|