search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 16, No. 4, 2013
Bioline Code: ej13035
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 16, No. 4, 2013

 en Molecular cloning, characterization and expression analysis of CpCBF2 gene in harvested papaya fruit under temperature stresses
Zhu, Xiaoyang; Li, Xueping; Chen, Weixin; Lu, Wangjin; Mao, Jia & Liu, Tongxin

Abstract

Background: C-repeat binding factors (CBFs) are transcription factors that regulate the expression of a number of genes related to abiotic stresses. Few CBF genes have been cloned from other plants but no report in papaya. In present study, a full-length cDNA, designated as CpCBF2, was cloned from papaya using in silico cloning and 5’- rapid amplification cDNA ends (RACE). Sequence analysis was performed to understand the gene function. The expression pattern of CpCBF2 in papaya under low (7ºC) and high temperature (35ºC) stresses was examined using real-time quantitative polymerase chain reaction (RT-qPCR).
Results: The full-length cDNA of CpCBF2 was 986-bp, with a 762-bp open reading frame (ORF) encoding a 254 amino acid polypeptide. CpCBF2 contained several major highly conserved regions including the CBF-family signature PKRRAGRKKFQETRHP and FADSAW in its amino acid sequence. Phylogenetic tree and three-dimensional structure analysis showed that CpCBF2 had a relatively close relationship with other plant CBFs. Gene expression analysis showed that high temperature stress had little effect on the expression of CpCBF2 but low temperature repressed CpCBF2 expression.
Conclusion: The results showed that CpCBF2 may involve in different roles in temperature stress tolerance. This study provided a candidate gene potentially useful for fruit temperature stress tolerance, although its function still needs further confirmation.

Keywords
CpCBF2; gene expression; papaya; temperature stresses

 
© Electronic Journal of Biotechnology
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2025, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil