en |
New insights into molecular targets for urinary incontinence
Poonia, Manoj K.; Kaur, Ginpreet; Chintamaneni, Meena & Changela, Ilesh
Abstract
Urinary incontinence (UI) is a disease affecting quality of life of 200 million patients worldwide. It is characterized by involuntary loss of urine. The factors involved are cystitis, detrusor hyperreflexia, spinal injury, benign prostatic hyperplasia, etc. The surge in the number of reviews on this subject indicates the amount of research devoted to this field. The prevalence is increasing at an alarming rate but unfortunately, only a few medications are currently available for this condition. There are peripheral as well as central targets including cholinergic, vanilloid, prostaglandin, kinin, calcium channel, cannabinoid, serotonin, and GABA-receptors, which act by different mechanisms to treat different types of incontinence. Drugs acting on the central nervous system (CNS) increase urinary bladder capacity, volume, or pressure threshold for micturition reflex activation while peripherally acting drugs decrease the amplitude of micturition contraction and residual volume. Anticholinergic drugs specifically M3 receptor antagonists are the first choice but have frequent side effects such as dry mouth, CNS disturbances, etc. Therefore, there is a need to understand the biochemical pathways that control urinary dysfunction to determine the potential to which they can be exploited in the treatment of this condition. This article reviews the central and peripheral molecular targets and the potential therapeutic approaches to the treatment of UI.
Keywords
Detrusor muscle, incontinence, molecular targets, overactive bladder
|