search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Reproductive BioMedicine
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences of Yazd
ISSN: 1680-6433
EISSN: 1680-6433
Vol. 19, No. 4, 2021, pp. 371-380
Bioline Code: rm21035
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Reproductive BioMedicine, Vol. 19, No. 4, 2021, pp. 371-380

 en Bovine oocyte developmental competence and gene expression following co-culturing with ampullary cells: An experimental study
Azari, Mehdi; Kafi, Mojtaba; Asaadi, Anise; Pakniat, Zohreh & Abouhamzeh, Beheshteh

Abstract

Background: There is no sufficient information on the impact of bovine ampullary oviductal epithelial cells (BAOECs) on in vitro oocyte maturation competence and gene expression.
Objective: This study aimed to examine the oocyte developmental competence following co-culturing with a monolayer of fresh and frozen-thawed ampullary cells.
Materials and Methods: Bovine cumulus-oocyte complexes (COCs) were distributed into three groups: control group; where in COCs were cultured in cell-free media for 24 hr and FML and FTML groups in which the COCs were cultured in maturation media for 18 hr and then transferred into a media containing fresh and frozen-thawed BAOECs monolayer, respectively (BAOECs were extracted from the oviducts of slaughtered cattle and were then cultured freshly or frozen-thawed) for a further 6 hr. After 24 hr, the expanded COCs were evaluated for nuclear maturation, fertilization rate, and gene expression (GDF9, StAR, CASP3, and FSHr).
Results: Nuclear maturation rate in the FTML group was significantly higher than the control group (p = 0.02). The fertilization rate of FTML group was significantly higher than the control and FML groups (p = 0.05 and p = 0.03, respectively). In terms of gene expression, GDF9 were upregulated in the presence of the BAOECs during the last 6 hr of the in vitro maturation (p < 0.001). Furthermore, the expression of the StAR gene in the FTML group was higher than the other groups (p = 0.02).
Conclusion: Ampullary cells co-culturing (especially frozen-thawed cells) for in vitro maturation of bovine oocytes yields encourages the results and demonstrates the beneficial effect of co-culture on gene expression and developmental competence.

Keywords
Ampulla; Bovine; Fertilization; Gene expression; IVM.

 
© Copyright 2021 - Azari et al.
Alternative site location: http://www.ijrm.ir

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil