search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 8, No. 1, 2011, pp. 31-44
Bioline Code: st11003
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 8, No. 1, 2011, pp. 31-44

 en Institutional scale operational symbiosis of photovoltaic and cogeneration energy systems
Mostofi, M.; Nosrat, A.H. & Pearce, J.M.

Abstract

Due to the negative environmental effects of fossil fuel combustion, there is a growing interest in both improved efficiency in energy management and a large-scale transition to renewable energy systems. Using both of these strategies, a large institutional-scale hybrid energy system is proposed here, which incorporates both solar photovoltaic energy conversion to supply renewable energy and cogeneration to improve efficiency. In this case, the photovoltaic reduces the run time for the cogeneration to meet load, particularly in peaking air conditioning times. In turn, however, the cogeneration system is used to provide power back up for the photovoltaic during the night and adverse weather conditions. To illustrate the operational symbiosis between these two technical systems, this study provides a case study of a hybrid photovoltaic and cogeration system for the Taleghani hospital in Tehran. Three design scenarios using only existing technologies for such a hybrid system are considered here:1) single cogeneration + photovoltaic, 2) double cogeneration + photovoltaic, 3) single cogeneration + photovoltaic + storage. Numerical simulations for photovoltaic and cogeneration performance both before and after incorporating improved thermal energy management and high efficiency lighting were considered. The results show that the total amount of natural gas required to provide for the hospitals needs could be lowered from the current status by 55 % for scenario 1 and 62 % for both scenarios 2 and 3, respectively. This significant improvement in natural gas consumption illustrates the potential of hybridizing solar photovoltaic systems and cogeneration systems on a large scale.

Keywords
Combined heat and power; Distributed generation; Hybrid energy system; Photovoltaic

 
© Copyright 2011 - Center for Environment and Energy Research and Studies (CEERS)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil