search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 11, No. 3, 2014, pp. 571-588
Bioline Code: st14057
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 11, No. 3, 2014, pp. 571-588

 en A wastewater treatment using a biofilm airlift suspension reactor with biomass attached to supports: a numerical model
Viotti, P.; Luciano, A.; Mancini, G. & Torretta, V.

Abstract

A mathematical model of the biological process occurring in a modified biofilm airlift suspension reactor is presented. When compared with a traditional wastewater treatment plant, a biofilm airlift suspension process has major advantages, such as higher oxygen levels in the bulk fluid and lower space requirements. The limited volumes obtained with this technique generally do not allow to reach the high times of contact required for an efficient removal of nitrogen that normally are characterized by a slower kinetics than carbonaceous compounds. To avoid this problem, supports for attached biomass growth were inserted in the reactor. Both physical and biological aspects were incorporated into the presented model to simulate the removal processes of the substrates. A sensitivity analysis was performed, and the model was validated using experimental results obtained at a lab-scale plant. This model can accurately estimate the removal rate in different boundary conditions providing the details of the water quality profiles through the reactor and in the attached biomass. The model thus represents a valid aid for design purposes and for the management of treatment plants that use these uncommon reactors. The model also provides the required hydraulic retention time for a complete nitrification and the appropriate recirculation ratio. The results have shown the full-scale applicability of this treatment due to its efficiencies coupled to the advantages of its low impact, low space requirement and low sludge production.

Keywords
Modified biofilm airlift suspension reactor; Attached biomass; Flux model; Biofilm model; Sensitivity analysis; Simultaneous nitrification–denitrification

 
© International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil