search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 11, No. 7, 2014, pp. 1959-1972
Bioline Code: st14192
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 11, No. 7, 2014, pp. 1959-1972

 en Heavy metals concentration in soils under rainfed agro-ecosystems and their relationship with soil properties and management practices
Srinivasarao, Ch.; Rama Gayatri, S.; Venkateswarlu, B.; Jakkula, V.S.; Wani, S.P.; Kundu, S.; Sahrawat, K.L.; Rajasekhara Rao, B.K.; Marimuthu, S. & Gopala Krishna, G.

Abstract

Heavy metals are governed by parent material of soils and influenced by the soil physicochemical properties and soil and crop management practices. This paper evaluates total heavy metal concentrations in rainfed soils under diverse management practices of tropical India. Vertisols (clayey soils with high shrink/swell capacity) had the highest concentrations of heavy metals. However, chromium (Cr) content was above the threshold value in Aridisol [calcium carbonate (CaCO3)]-containing soils of the arid environments with subsurface horizon development. Concentration increased at lower depths (>30 cm). Basaltic soils showed higher concentrations of nickel (Ni), copper (Cu) and manganese (Mn). Cadmium (Cd), cobalt (Co), Cu and Mn concentrations were higher in soils cultivated to cotton, whereas Cr concentration was above the threshold level of 110 mg kg-1 in food crop cultivated soils. As the specific soil surface is closely related to clay content and clay type, soil’s ability to retain heavy metals is more closely tied to the specific surface than to the soil cation exchange capacity. Higher positive correlations were found between heavy metal concentrations and clay content [Cd(r = 0.85; p ≤ 0.01); Co (r = 0.88; p ≤ 0.05); Ni (r = 0.87; p ≤ 0.01); Co (r = 0.81; p ≤ 0.05); Zn (r = 0.49; p ≤ 0.01); Cr (r = 0.80; p ≤ 0.05); Mn (r = 0.79; p ≤ 0.01)]. The amounts of nitrogen–phosphorus– potassium applied showed a positive correlation with Co and Ni (r = 0.62; p ≤ 0.05). As several soils used for growing food crops are high in Ni, Cr and Mn, the flow of these metals in soil–plant–livestock/human chain needs further attention.

Keywords
Fertilization practices; Parent material; Tropical climate; Vertisols; Inceptisols; Alfisols; Aridisols

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil