search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 13, No. 7, 2016, pp. 1641-1652
Bioline Code: st16154
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 13, No. 7, 2016, pp. 1641-1652

 en The distribution and elevated solubility of lead, arsenic and cesium in contaminated paddy soil enhanced with the electrokinetic field
Mao, X.; Han, F. X.; Shao, X.; Guo, K.; McComb, J.; Njemanze, S.; Arslan, Z. & Zhang, Z.

Abstract

The objectives of this study were to investigate fractionation, solubility and potential bioavailability of Pb, As and Cs in Mississippi River Delta paddy soil under an electrokinetic field (EKF). Effects of EKF on soil pH changes and solid-phase distributions of metal(loid)s were examined. Results showed that fractionation of Pb, As and Cs was largely determined by the nature of elements, loading levels and EKF treatment. Native Pb in the soil was mostly in the amorphous iron oxide, organic matter and residual fractions, native As in the amorphous iron oxide, easily reducible oxide and residue fractions while native Cs in the residue fraction. Added Pb, As and Cs showed distinguished solid-phase distributions: Pb dominantly in the organic matter fraction; As in the amorphous iron oxide fraction, and Cs in the residue with a significant watersoluble plus exchangeable fraction. EKF treatment is effective on lowering soil pH to 1.5 near the anode due to water electrolysis releasing proton which is beneficial for dissolution of metal(loid)s, increasing their overall solubility. The acidification in the anode soil efficiently increased the water-soluble Pb and the exchangeable Cs, implying enhanced solubility and elevated their overall potential bioavailability in the anode region while lower solubility in the cathode area. The building up of watersoluble As in the anode region may be from electromigration of As anion from the cathode. This study shows significant enhancement of redistribution, elevated solubility and overall bioavailability of Pb, As and Cs in Mississippi Delta paddy soil under the EKF.

Keywords
Metal(loid); Distribution; Mobility; Bioavailability; Electrokinetic remediation

 
© Copyright 2016 - Islamic Azad University
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil