search
for
 About Bioline  All Journals  Testimonials  Membership  News


Zoological Research
Kunming Institute of Zoology, Chinese Academy of Sciences
ISSN: 2095-8137
Vol. 39, No. 6, 2018, pp. 387-395
Bioline Code: zr18037
Full paper language: English
Document type: Research Article
Document available free of charge

Zoological Research, Vol. 39, No. 6, 2018, pp. 387-395

 en Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes
He, Da-Jian; Wang, Lin; Zhang, Zhi-Bi; Guo, Kun; Li, Jing-Zheng; He, Xie-Chao; Cui, Qing-Hua & Zheng, Ping

Abstract

DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.

Keywords
Ooep; Homologous recombination; DNA double-strand break repair; ATM; RAD51

 
© Copyright 2016 - Editorial Office of ZOOLOGICAL RESEARCH
Alternative site location: http://www.zoores.ac.cn/

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2025, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil