en |
Perspectives on studying molecular adaptations of amphibians in the genomic era
Sun, Yan-Bo; Zhang, Yi & Wang, Kai
Abstract
Understanding the genetic mechanisms underlying particular adaptations/phenotypes of organisms is one of the core issues of evolutionary biology. The use of genomic data has greatly advanced our understandings on this issue, as well as other aspects of evolutionary biology, including molecular adaptation, speciation, and even conservation of endangered species. Despite the well-recognized advantages, usages of genomic data are still limited to non-mammal vertebrate groups, partly due to the difficulties in assembling large or highly heterozygous genomes. Although this is particularly the case for amphibians, nonetheless, several comparative and population genomic analyses have shed lights into the speciation and adaptation processes of amphibians in a complex landscape, giving a promising hope for a wider application of genomics in the previously believed challenging groups of organisms. At the same time, these pioneer studies also allow us to realize numerous challenges in studying the molecular adaptations and/or phenotypic evolutionary mechanisms of amphibians. In this review, we first summarize the recent progresses in the study of adaptive evolution of amphibians based on genomic data, and then we give perspectives regarding how to effectively identify key pathways underlying the evolution of complex traits in the genomic era, as well as directions for future research.
Keywords
Molecular adaptation; Gene subnetwork; Phenotypic evolution; Transposable element; Amphibians
|