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ABSTRACT: Organoselenium compounds are a new class of emerging potent antioxidants. Basically, their rational 

design and synthesis was aimed at mimicking the native glutathione peroxidase enzyme in their reduction of 

hydroperoxides at the expense of the ubiquitous antioxidant, glutathione. In this review, emphasis was focused on 

the seemingly antagonistic mechanisms employed by organoseleniums under in vitro and in vivo conditions. 

Summarily, in vitro evidences clearly demonstrate that the pharmacological effect of organoseleniums strictly 

depends on their GPx mimic. However, these selenium based compounds evoke an increase in the level of 

endogenous thiols suggesting a possible switch in their glutathione peroxidase mimic under in vivo conditions. 

Apparently, this mechanistic switch is puzzling and requires concerted efforts to unravel. 
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IN SELENOPROTEINS – THE MAKING OF 

POTENT NUCLEOPHILES 

Selenium, named after the Greek Goddess of the moon, 

Selene was first discovered in 1817 by the Swedish chemist 

Jöns Jacob Berzelius (Comasseto 2010; Nogueira and Rocha, 

2010). This element shares some chemical properties with 

sulfur and tellurium. But biologically speaking, selenium 

shares some properties with sulfur and their sulfhydryl and 

their selenohydryl and sulfhydryl groups (Figure 1) can be 

considered two important soft nucleophile center classes in 

cell (note that sulfhydryl or thiol and selenohydryl or selenol 

groups are soft analogs of the hard analog hydroxyl group, 

see Figure 1 for comparisons). 

It is a common knowledge in the scientific community 

that selenium is an essential dietary trace element for 

mammals (Zwolak and Zaprowska, 2012; Loef et al., 2011; 

Harthill, 2011; Soni et al., 2010; Brozmanova et al., 2010). 

Essentially, selenium is a component of selenoproteins 

found in most living things. For examples, vertebrates have 

about 2 to 3 dozens of selenoproteins (Lobanov et al. 2007, 

2009). In vertebrates, selenium can be considered as a 

“supersulfur”, when present in the form of a selenol (R-SeH; 

Scheme 1), which is a softer and stronger nucleophile than  
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its thiol analogue (Nogueira and Rocha 2010). Selenol 

groups are considerably less abundant than thiol groups and 

are found in a very small number of selenoproteins (Lobanov 

et al. 2007, 2009; Araie and Shiraiwa 2009). These findings 

suggest that excess of thiolate over selenolate groups cannot 

replace selenium in cell physiology. 

GLUTATHIONE – AN IMPORTANT UBIQUITOUS 

ANTIOXIDANT 

At this point, it should be noted that the role played by 

selenium in different classes of prokaryote and eukaryote 

cannot be viewed as a simple substitution of the sulfur 

analogue as exemplified in Fig.  1. Generally, in the case of 

mammals, one of the most important soft nucleophiles 

found in cells and in the extracellular fluids is the sulfhydryl 

group (thiol/thiolate; Figure 1), which can be found in the 

low-molecular-weight compounds such as cysteine and 

glutathione or in high-molecular-weight proteins. The 

concentration of low-molecular-weight thiols can be as high 

as 5–10 mmol/L, depending on the tissue considered (Maciel 

et al. 2000). Of these low molecular weight thiols, it is 

worth mentioning that glutathione (GSH, γ-L-glutamyl-L-

cysteinylglycine) is a predominant intracellular thiol 

compound and one of the most important antioxidants in  

FIGURE 1 Nitration Structures of serine, cysteine (thiol-thiolate form) and 

selenocysteine (selenol-selenolate form). 

SCHEME 1 Comparison between thiol/thiolate and selenol/selenolate groups.  Selenol group is a 

stronger soft nucleophile than an analog thiol. Selenol groups are also more acidic than the thiol groups 

by about 3 orders of magnitude (compare the pka of each group). 
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the central nervous system. It is present in cytoplasm, 

nucleus and mitochondria of neurons and exerts effects on 

receptor function (such as NMDA receptor), and apoptosis 

regulation. GSH reacts indirectly with radicals, such as 

superoxide radical, nitric oxide and hydroxyl radical. 

Moreover, it is an electron donor in reactions catalyzed by 

glutathione peroxidase (GPx). Glutathione can also 

covalently interact with different proteins and can modulate 

the thiol-containing-proteins functioning via a 

glutathionylation reaction  (For a comprehensive review of 

the physiological role of glutathione see Drigen, 2000; 

Garcia-Garcia et al. 2012; Markovic et al. 2010; Naoi et al. 

2009;  Wu et al. 2004; Cotgrave 2003). 

SELENIUM INCORPORATION INTO 

SELENOPROTEINS 

Major milestones along the course of identification that 

selenium is an element with biological functions were the 

biochemical confirmation that the mammalian glutathione 

peroxidase was a selenoprotein (Flohe et al. 1973; Rotruck et 

al. 1973) and selenium atom is present in selenoproteins in 

the form of selenocysteine in rat liver glutathione peroxidase 

(Forstrom et al. 1978). Thereafter, it was determined that all 

selenoproteins contain at least one selenocysteinyl residue 

in their structures (Lu and Holmgren 2009; Lobanov et al. 

2009). The incorporation of a selenium in selenoproteins is 

complex and requires different enzymatic steps and 

complex macromolecular components (including a specific 

t-RNA charged with serine (t-RNA[Ser]Sec), the 

selenocysteine insertion sequence (SECIS) element located 

in the 3´-untranslated region of the mRNA of the 

selenoprotein, and protein factors such as elongation factor 

EFSec and the SECIS binding protein 2, SBP2; see Bock et al. 

1991).  

Indeed, the extremely high chemical reactivity of 

selenocysteine precludes its existence as free amino acid in 

aerobic cell environment. Thus, to circumvent this chemical 

problem, the machinery of synthesis of selenoproteins has 

evolved as an expansion of the genetic code and the UGA 

codon, which is a termination code, codifies for a 

selenocysteine. However, here we must emphasize that this 

occurs only when UGA is present within the RNA 

sequences of a given selenoprotein (Allmang et al. 2009).   

Selenocysteine is formed by the incorporation of Se from 

selenophosphate in O-phosphoseryl-tRNA([Ser]Sec). 

Consequently, the serine residue is transformed in 

selenocysteine and the hard nucleophile group –OH is 

transformed in the soft nucleophile group -SeH (Allmang et 

al. 2009) and physiologically there is no a free pool of 

selenocysteine. 

SCHEME 2 The Generic reactions catalyzed by glutathione peroxidase (GPx). GPx isoforms can decompose 

different peroxydes (including hydrogen peroxide, organic peroxides and peroxynitrite) forming non-toxic 

products. 
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THE SELENOPROTEINS – EMPHASIS ON 

GLUTATHIONE PEROXIDASE  

The glutathione peroxidase (EC 1.11.1.19) is an important 

selenoprotein that has a direct bearing on our review. This 

enzyme catalyzes the reduction of a variety of 

hydroperoxides (ROOH and H2O2) using GSH as a 

reductant. More recently, Sies and collaborators have 

obtained persuasive experimental points of evidence 

demonstrating that GPx1 (cytosolic glutathione peroxidase) 

can decompose peroxynitrite in vitro (Scheme 2; Sies and 

Arteel, 2000; Mugesh et al., 2001). However, the 

physiological role of GPx1 as a modulator of peroxynitrite 

level has not yet been demonstrated. In addition, there are at 

least six seleno-glutathione peroxidase isoenzymes 

identified in mammals, so far, differing in many properties, 

including their localization, subunit number, global 

structure, primary structure, and enzymatic properties. 

Although, their expression is ubiquitous, the levels of which 

isoform vary, depending on the tissue type. The classical 

cellular glutathione peroxidase (GPX1 or cGPX), found in 

cytosolic space and mitochondria, reduces fatty acid 

hydroperoxides and H2O2. Phospholipid hydroperoxide 

glutathione peroxidase (GPX4 or PHGPX), found in most 

tissues and located in both the cytosol and the membrane 

fraction, can directly reduce the phospholipid 

hydroperoxides, fatty acid hydroperoxides, and cholesterol 

hydroperoxides that are produced in peroxidized 

membranes and oxidized lipoproteins. Finally, cytosolic 

glutathione peroxidase (GPX2 or GIGPX) and extracellular 

glutathione peroxidase (GPX3 or eGPX) are rarely detected 

in most tissues except for the gastrointestinal tract and 

kidney (Tapiero et al., 2003; Luo et al., 2003). Considering 

the importance of glutathione peroxidase activity, the 

enzymatic catalytic cycle was studied by the Flohe and 

Wendel groups (Flohe et al., 1973; Flohe, 1989; Wendel et al., 

1975; Wendel et al., 1984). Thus, they demonstrated that 

glutathione peroxidase catalyzes the reduction of H2O2 at 

the expense of GSH. As illustrated in Figure 2, the selenol 

group (-SeH) of a reduced selenocysteine molecule is 

oxidized by the hydroperoxides to generate a selenenic acid. 

The tripeptide GSH then reacts with the selenenic acid, 

resulting in the corresponding water and selenenyl sulfide. 

A second molecule of GSH attacks the sulfur in the latter 

species, producing disulfide and regenerating the selenol to 

complete the catalytic cycle (Flohe, 1989; Wendel et al., 

1975). 

Since glutathione peroxidase catalyzes the reduction of a 

wide variety of hydroperoxides and together with GSH 

constitutes a powerful cellular defense system against so-

called oxidative stress, considerable efforts have been made 

to find compounds capable of imitating the enzymatic  

FIGURE 2 The catalytic mechanism of the native glutathione peroxidase. The cycle of the enzyme 

highlights the role of oxidation of its selenol group (-SeH) to selenenic acid (-SeOH) that is 

sequentially reduced by GSH to regenerate the native reduced enzyme. 
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properties of glutathione peroxidase. This becomes crucial 

considering some shortcomings of the administration of 

native GPx with therapeutic objectives, including instability 

and poor availability. Consequently, the high molecular 

weight of native GPx limits its therapeutic application. 

Therefore, considerable efforts have been made to find 

organoselenium compounds capable of imitating the 

enzymatic properties of glutathione peroxidase and free of 

these aforementioned shortcomings. In this context, several 

research groups have developed a number of small 

molecules, including substituted diselenides, N-Se 

heterocycles, and other type of organoselenium compounds 

with glutathione peroxidase-like activity (Bhabak and 

Mugesh 2010). It is also worth mentioning that 

semisynthetic enzymes, obtained by enzyme engineering, 

have been proposed as mimics of glutathione peroxidase 

(Luo et al., 2003; Ren et al., 2002). Our focus in this review 

is on the synthetic organoselenium compounds with 

glutathione peroxidase mimic and we will give emphasis to 

ebselen and diphenyl diselenide, two compounds that have 

GPx-like activity (Wilson et al. 1989) and have been found 

to exert antioxidant and protective effects in different in 

vitro and in vivo models of toxicity (Nogueira and Rocha, 

2010; 2011). We want to emphasize that for an 

organoselenium compound to exhibit antioxidant 

properties, it must show nucleophilicity necessary for 

glutathione peroxidase-like activity, potential free radical 

scavenger activity, and low toxicity.  To imitate native GPx, 

organoselenium compounds are thought to be transformed 

into selenol intermediates either via reduction by thiol or via 

NADPH-dependent enzymatic reduction by hepatic and 

cerebral thioredoxin reductase (Figure 3; De Freitas and 

Rocha 2011) Consequently, the rational synthesis, 

pharmacological testing and toxicological evaluations of 

organoselenium compounds have been quite an arduous 

task (Nogueira and Rocha 2010). 

DEVELOPMENT OF SYNTHETIC 

ORGANOSELENIUM COMPOUNDS WITH GPX 

MIMICS 

The identification of selenocysteine in the active center of 

hepatic rat glutathione peroxidase in the laboratory of 

Tappel in 1978 brought to scene the softest nucleophile 

group found in the biological system, i.e., the selenol group 

(Tappel, 1978; Pierce and Tappel, 1978). Selenol groups are 

powerful reducing components of antioxidant enzymes such 

as glutathione peroxidase and thioredoxin reductase (Lu 

and Holmgren 2009; Nogueira and Rocha 2010, 2011). 

Following this, a number of organoselenium compounds 

have been synthesized and tested as a mimetics of GPx 

(Muller et al. 1984; Wendel et al. 1984; Parham and Kindt, 

1984). Ebselen was the first organoselenium with  

FIGURE 3 Reduction of Ebselen and Diphenyl Diselenide by a direct interaction with Reduced Glutathione or by an indirect 

Reduction Mediated by Thioredoxin Reductase (TrxR). The mammalian TrxR uses the electron equivalents derived from 

NADPH to reduce Ebselen and Diselenide. The formation of the selenol intermediates (pink and blue coloured groups) of 

these compounds is crucial for their thiol-peroxidase like activity that can decompose efficiently different peroxides. 
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demonstrable GPx-like activity, requiring reduced 

glutathione or other reduced thiols to catalyze the reduction 

decomposition of a wide variety of hydroperoxides (Figure 

4) (Parnham and Kindt 1984; Wendel et al. 1984; Müller et 

al. 1984). The mechanism of ebselen mediated 

decomposition of peroxides have been described to be 

kinetically similar to that of GPx reaction (compare Figures 

2 and 4; Maiorino et al. 1988). First, ebselen reacts with the 

thiols to generate a selenenyl sulfide. The selenenyl sulfide 

reacts with a second equivalent of GSH to yield a selenol 

intermediate. Finally, the selenol reacts with H2O2 or 

organic hydroperoxide to form H2O or the respective alcohol 

(ROH) and ebselen selenenic acid. While GSH is an 

important thiol for ebselen GPx mimic (Maiorino et al. 1988; 

Haenen et al. 1990), it is important to point out that in 

contrast to the reaction catalyzed by the enzyme, which 

contains binding sites conferring substrate specificity, 

ebselen and other organoselenium compounds can utilize a 

variety of thiols with varying degree of efficiency (Engman 

et al. 1992; Iwaoka and Tomoda 1994; Mugesh et al. 2001). In 

addition to ebselen, another class of organoselenium 

compounds worth mentioning is the diorganyl diselenides 

(see Figure 4). Among the diorganyl diselenides, diphenyl 

diselenide (DPDS) has been well studied. (Nogueira et al., 

2004, Nogueira and Rocha, 2010, 2011) and the schematic 

GPx mimic is presented in Figure 4. The decade of the 

1990s was characterized by an enormous development in the 

field of small synthetic organoselenium compounds that 

mimic glutathione peroxidase catalytic activity, such as 

benzoselenazinones (Jacquemin et al. 1992), 

benzoselenazolinones (Galet et al. 1994), camphor-derived 

selenenamide (Back and Dick 1997), 2-

phenylselenenylnaphthol (Engman et al. 1995), alfa-

(phenylseleny) ketones (Engman et al. 1994), and oxygen-

containing diselenides (Wirth, 1998). Moreover, a number of 

attempts have been made to design and synthesize ebselen-

related GPx mimics based on substituent effects or isosteric 

replacements, most of them met with limited success. 

Ebselen derivatives, such as benzisochalcogenazolones, 

contain intramolecular interactions as Se-O and 

consequently increased the catalytic activity of ebselen. For 

FIGURE 4 Thiol peroxidase-like Activity of Ebselen (left) and Diphenyl Diselenide (Right). Ebselen and diselenide showing 

their chemical structure and their derivatives during the catalytic detoxification of H2O2 done at the expenses of reducing 

equivalents derived from GSH (adapted from Nogueira et al. 2004). 
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instance, benzisoselenazolones N-alkyl substituted were 

more active than ebselen. However, benzisoselenazolone N-

phenyl substituted showed lower peroxidase activity than 

ebselen, which could be attributed to its poor solubility. 

CONSTRAINTS TO GPX MIMIC OF 

ORGANOSELENIUMS 

In Figure 4, we can observe that the GPx mimic activity of 

ebselen depends on the reduction of the selenenic acid to 

selenol by thiols. This raises two vital questions: Is the GPx 

mimic efficiency of a specific organoseleniums strictly 

dependent on critical thiol type? Is the GPx mimic catalytic 

efficacy of any organoselenium compound critically 

dependent on the nature of the peroxides? Elegant findings 

by Mugesh and his collaborators provided insight to these 

questions. They observed that any substituent that is 

capable of enhancing the nucleophilic attack of thiol at 

sulfur in the selenenyl sulfide intermediate would enhance 

the antioxidant potency of ebselen and other 

organoselenium compounds. It was demonstrated that the 

use of thiol having an intramolecular coordinating group 

would enhance the biological activity of ebselen. On the 

other hand, they observed that the nature of the peroxide 

has little effect on the catalytic efficiencies (Bhabak and 

Mugesh 2007). However, other authors observed that 

electronic and steric effects have profound influence on the 

GPx-like activity of ebselen. The incorporation of a 

substituent ortho to the selenium atom sterically hinders 

the attack of a nucleophile at selenium, prevents thiol 

exchange reactions, and promotes the production of selenol, 

the GPx-active form, and thus, the GPx-like activity is 

greatly enhanced. This study further demonstrated that the 

electronic nature of the substituent groups is less important 

than their steric effects to the peroxidase-like activity 

(Pearson and Boyd 2008). 

Taking a holistic view of the considerations above, 

Sarma and Mugesh in 2008 postulated a revised mechanism 

for the GPx-mimetic activity of ebselen. Considering the 

complications associated with the catalytic mechanism of 

ebselen and that none of the intermediates other than the 

selenenyl sulfides have been confirmed, a reversible 

cyclization pathway was demonstrated. This study shows 

the first structural evidence that the seleninic acid, which 

was never proposed as an intermediate in the catalytic 

mechanism of ebselen, is the only stable and isolable 

product in the reaction of ebselen with peroxides. 

PHARMACOLOGICAL IMPLICATION OF THE GPX 

MIMIC OF ORGANOSELENIUMS 

From the foregoing, it is apparent that at least some 

organoselenium compounds are capable of performing the 

redox cycle of glutathione peroxidase, with the property of 

imitating the redox physiological chemistry of 

selenol/selenolate groups. Consequently, specific 

selenocompounds (such as diphenyl diselenide and ebselen) 

might supplement natural cellular defenses against the 

oxidizing agents especially in mammalian systems. 

Therefore, synthetic organoselenium compounds could 

represent a novel therapeutic approach to target diseases 

where oxidative stress plays a role (Arteel and Sies, 2001). 

For an organoselenium compound to be an antioxidant, it 

must show nucleophilicity necessary for imitating 

glutathione peroxidase, potential free radical scavenger 

activity, and low toxicity. In this way, pharmacological 

research with organoselenium compounds has provided 

fascinating challenges in dose–response relationships 

because of its contrasting behavior that is dose dependent 

(Nogueira and Rocha, 2010). At this point, we focused on 

the pharmacological implications of the GPx mimic of 

synthetic organoseleniums, with emphasis on their 

antioxidants effects.   

In the last four decades, the antioxidant or 

organoselenium compounds have been reported in different 

in vitro experimental models (Hermenegildo et al. 1990; 

Christison et al. 1994; Rossato et al. 2002a; Tiano et al. 2003; 

Andersson et al. 1994; Rossato et al. 2002b; Meotti et al. 

2004). A number of newly synthesized analogues of ebselen 

(2-(5-chloro-2-pyridyl)-7-azabenzisoselenazol-3(2H)-one, 

2-phenyl-7-azabenzisoselenazol-3(2H)-one, 2-(pyridyl)-7-

azabenzisoselenazol-3(2H)-one, 7-azabenzisoselenazol-

3(2H)-one, and bis(2-aminophenyl) diselenide) were 

screened for antioxidant activity in human blood platelets. 

Among these compounds, only bis(2-aminophenyl) 

diselenide inhibited lipid peroxidation. Bis(2-aminophenyl) 

diselenide was also effective in preventing the generation of 

oxidized low-molecular-weight thiols (GSH, cysteine CSH, 

cysteinylglycine CGSH) in platelets (Saluk-Juszczak et al. 

2006). Ebselen and other organoselenium compounds can 

potentially react with peroxynitrite, an extremely reactive 

nitrogen species (NS) and a potent pro-inflammatory agent 

(Masumoto and Sies 1996; Masumoto et al. 1996). 

Accordingly, peroxynitrite (ONOO) is a strong electrophile 

that is produced by the reaction of nitric oxide and 

superoxide anion. Consequently, uncontrolled generation of 

peroxynitrite, normally causes exacerbate oxidation of 

critical biomolecules that is accompanied by an intensive 

destruction of host cellular constituents.  For instance, 

peroxynitrite causes the nitration of tyrosyl residues of 

specific proteins (Figure 5) and can disrupt the 

physiological function of oxidized protein (Figure 5; d’Ischia 

et al. 2012; Castro et al. 2011;  Butterfield et al. 2011). 
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The reaction of diselenides with peroxynitrite has not been 

demonstrated. However, diaryl diselenides, diphenyl 

diselenide and p-chlorodiphenyl diselenide (in analogy to 

ebselen) inhibited lipid peroxidation induced by sodium 

nitroprusside, which can be a consequence of their reaction 

with nitric oxide or peroxynitrite formed from its oxidation 

(Rossato et al. 2002b). However, detailed studies about the 

reaction of diselenides (and selenolate intermediates formed 

after reduction by GSH or other reduced thiols) are highly 

desirable to determine the affinity of these forms towards 

the cytotoxic peroxynitrite.  Of particular pharmacological 

significance, diphenyl diselenide can reduce the oxidation 

and nitration found in a model of atherosclerosis in mice 

(Hort et al. 2011), indicating that diphenyl diselenide can 

reduce the toxicity of peroxynitrite to the endothelial cell in 

mice that do not express ApoE receptor. 

EVIDENCE OF GPX MECHANISTIC SWITCHING BY 

ORGANOSELENIUMS IN VIVO 

Consequent from the GPx mimic described above, it is 

apparent that in mammals, the pharmacological effect of 

organoselenium compounds will depend on the ubiquitous 

antioxidant tripeptide, glutathione to effect their 

pharmacological actions. In fact several in vitro models have 

consistently shown that the GPx mimic is the critical 

mechanisms for organsoselenium (For excellent reviews, see 

Mugesh et al., 2001, Nogueira et al., 2004, Nogueira and 

Rocha 2010, 2011). In our lab, we have demonstrated that 

organic moiety of organoselenium compounds can have 

profound effect on their GPx mimic. In this regard, we 

compared diphenyl diselenide and dicholesteroyl diselenide, 

the latter having a bulky organic moiety than the former 

(Kade et al., 2008). In that report, we observed that diphenyl 

diselenide exhibited marked GPx mimc than dicholesteroyl 

diselenide. Similarly, diphenyl diselenide exerted strong in 

vitro antioxidant effect in several models of oxidative stress 

than dicholesteroyl diselenide. Furthermore, reports have 

shown that diverse organoseleniums with differential GPx 

mimic exerted differential pharmacological potencies. In 

this regard, p-chlorodiphenyl diselenide, diphenyl 

diselenide, and diethyl diselenide were more catalytic than 

ebselen. Diselenides, p-aminodiphenyl diselenide, and 

dibutyl diselenide had poor GPx-like activity, while p-

methoxyldiphenyl diselenide and dipropyl diselenide had no 

effect (Meotti et al. 2004; Wilson et al. 1989). Strict 

FIGURE 5 Nitration of proteins by peroxynitrite: Inhibition by Ebselen. Protein nitration can cause loss of 

physiological function of a given protein. Ebselen can inhibit protein nitration via a direct interaction with 

peroxynitrite. 
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dependence of organoseleniums on GSH as a substrate for 

their GPx mimic rather than other thiols is apparent in the 

light of our observation and other authors wherein the GPx 

activity of ebselen and related compounds were studied to 

understand the reason for the relatively poor catalytic 

activity of these compounds in aromatic thiol assays 

(Parnham and Graf, 1987; Mugesh et al., 2001, Nogueira et al., 

2004). The reaction of ebselen with thiophenyl (PhSH) does 

not generate any selenol even when an excess amount of 

thiol is used. Although the Se-N bond in ebselen is readily 

cleaved by PhSH to produce the selenenyl sulfide, the 

reaction of selenenyl disulfide with PhSH does not produce 

the selenol. This is due to the presence of strong Se · · ·O 

nonbonded interactions in the selenenyl sulfide, which 

facilitates an attack of thiol at selenium rather than at sulfur, 

leading to thiol exchange reaction (Parnham and Graf, 1987). 

This undesired thiol exchange reaction hampers the 

formation of selenol. Further studies also indicate that the 

nature of thiol has a dramatic effect on the catalytic 

activities of these ebselen analogues. On the other hand, as 

mentioned above, the nature of peroxides does not appear to 

have any significant effect on the catalytic efficiencies. 

Therefore, the discrepancies in the activities of 

organoselenium compounds in various assays should arise 

mainly from the variation in thiol used for the reduction of 

hydroperoxides.  

Apparently, the GPx mimic of organoselenium accounts 

for most of their observed pharmacological effect. At this 

point, we could speculate that the pharmacological activity 

of organoseleniums may generate a diminished level of 

glutathione as well as other thiols levels in physiological 

systems. Therefore, under in vivo conditions, we expect that 

the antioxidant efficacy of any organoselenium, much like 

the native GPx, will largely depend on the availability of the 

endogenous tripeptide, GSH.  However, under in vivo 

conditions and even under various conditions of oxidative 

stress related disease models where the level of GSH is 

generally compromised, administration of organoselenium 

compounds generally elevated the physiological level of the 

tripeptide, GSH. This is a paradox and a puzzle with respect 

to the chemistry of organoselenium compounds. This review 

will now focus on data obtained by several authors vis-à-vis 

the in vivo effects of organoselenium compounds with a view 

to illustrate this puzzling phenomenon. We want to 

emphasize that our focus will be tailored towards the 

influence of organoselenium compounds on the level of the 

endogenous thiols especially GSH.            

At this point, we want to review data obtained by 

several authors with respect to the relationship of 

organoseleniums and level of endogenous thiols under in vivo 

conditions. In the study of Pawlas and Maecki, (2007), they 

observed that under combined conditions of normoxia and 

ischemia, ebselen (1 - 20 µM) increased the level of 

intracellular GSH (126.49 ± 9.46% - 144.52 ± 9.84% 

respectively). However, under ischemic condition alone, 

ebselen increased GSH level in the range (157.02 ± 18.09 - 

119.35 ± 12.00%). It would be observed that under normoxia, 

higher doses of ebselen exerted more pronounced effects, 

while in ischemia, the opposite effect was observed. These 

authors argued that one possible explanation for this 

observed effect is that the increase in GSH level after 

ebselen administration could be at least partially explained 

by the decreased GSH consumption caused by 

strengthening of antioxidative mechanisms. They concluded 

that ebselen administration probably replaces ischemia-

inactivated GPx activity, thereby contributing to reduction 

of GSH consumption and diminution of oxidative stress. In 

another report, Wistar rats were treated with 7,12-

dimethylbenz[a]anthracene (DMBA) and the 

organoselenium compounds [1- isopropyl-3-

methylbenzimidazole-2-selenone (Se I) and 1, 3-di-p-

methoxybenzylpyrimidine-2-selenone (Se II)] in determined 

doses. They observed that administration of rats with 

DMBA significantly resulted in decreased amount of total 

GSH levels in these rats and that the antioxidant activities 

and total GSH levels were significantly increased with 

administration of the organoselenium compounds (Talas et 

al., 2009a,b). In the work of Kiersztan and collaborators, 

they observed that diabetes induced a decrease in GSH level 

accompanied by a rise in GSSG content; hence GSH/GSSG 

ratio in diabetic was 50% lower than the value achieved in 

control animals. However, this condition was reversed by an 

organoselenium, methyl-selenocysteine where they observed 

that blood GSH level in diabetic animals increased by about 

40%, following methyl-selenocysteine administration, 

consequently resulting in an elevation of GSH/GSSG ratio. 

This effect of methylselenocysteine was attributed to its 

ability to interfere with the enzyme γ-glutamylcysteine 

synthetase (Kiersztan et al., 2009). In our group, we have 

also investigated the effect of organoseleniums on diabetes 

and glutathione homeostasis. For example, we have reported 

that diet supplementation of diphenyl diselenide positively 

influenced total hepatic –SH groups in diabetic rats. In fact, 

diabetes in these rats caused a reduction of about 23% in the 

hepatic –SH levels. Ingestion of diphenyl diselenide 

supplemented diet caused a significant increase in hepatic –

SH both in diabetic and non-diabetic rats. In addition, level 

of –SH in erythrocytes was markedly increased by diphenyl 

diselenide in both diabetic and non-diabetic rats (Barbosa et 

al., 2008a). 
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In fact, we have shown that route of administration, 

vehicle solution can greatly influence the pharmacology of 

organoselenium compounds (Kade et al., 2010). Therefore we 

again tested subcutaneous administration (pharmacological 

dose 1 mg/kg body weight) or acute 10 mg/kg body weight 

(Barbosa et al., 2008b) of either ebselen and diphenyl 

diselenide in diabetic rats (Barbosa et al., 2006). We 

observed that diphenyl diselenide treatment promoted per se 

a significant increase on hepatic, renal and blood GSH levels 

compared to control group. Similarly, in diabetic rats 

treated with the organoselenium, diphenyl diselenide, there 

was an elevated GSH levels in liver and kidney. In addition, 

oral administration of diphenyl diselenide in soya bean oil 

greatly increased the otherwise diabetic depleted hepatic 

GSH levels in rats, and diphenyl diselenide promoted a 

significant increase in hepatic, renal and spleen GSH levels. 

Also in the brain, diabetes also caused a noticeable 

diminution in the level of cerebral GSH and treatment with 

diphenyl diselenide evoked a significant sparing effect on 

the levels of GSH in the diabetic rat brain (Kade et al., 

2009a,b). 

From the foregoing, we observed that under in vivo 

conditions, organoselenium compounds evoked a marked 

increase in the level of endogenous thiols such as GSH. This 

is a puzzling in view of the generally acclaimed GPx mimic 

organoseleniums. In a stride to explain this observed 

phenomenon, we explored other possible antioxidant 

mechanisms that may be critical to pharmacology of 

organoseleniums in different physiological states and in this 

case, we studied diphenyl diselenides. Although there are 

few published studies on molecular mechanisms involved in 

diphenyl diselenide antioxidant property, we further 

confirmed that diphenyl diselenide generally exert its 

antioxidant action by mimicking glutathione peroxidase. 

Therefore, the effect of pH on GPx mimic activity and other 

possible mechanisms involved in the diphenyl diselenide 

antioxidant activity were investigated. On the one hand, 

diphenyl diselenide had neither free radical-scavenging nor 

Fe2+-chelating ability. However, diphenyl diselenide 

exhibited increasing ability to reduce Fe3+ with increasing 

pH. It is possible to hypothesize that the formation of stable 

selenolate ions increases the reducing property of this 

molecule and its antioxidant property. On the other hand, 

the GPx-like activity of diphenyl diselenide was maximum 

at neutral pH diminished in the acidic medium. 

Furthermore, independent of the pH, diphenyl diselenide 

decreased deoxyribose degradation mediated by either 

hydrogen peroxide or Fe2+. This indicates that the 

antioxidant properties of diphenyl diselenide in the acidic 

medium may not be related to its GPx-like activity 

(Ogunmoyole et al. 2009; Hassan et al. 2009a, b, c, d). 

FURTHER EVIDENCE OF MECHANISTIC GPX 

MIMIC SWITCHING BY ORGANOSELENIUM IN 

VIVO  

In fact, there are ample indirect evidences that indicate that 

there is a possible switch in the GPx mimic activity of 

organoseleniums chemistry under in vivo conditions. In this 

regard, the interaction of these classes of antioxidants with 

thiol containing proteins is worth mentioning. The 

sulfhydryl enzymes such as Na+/K+-ATPase (also known as 

the sodium pump), delta aminolevulinic acid dehydratase, 

lactate dehydrogenase are sensitive to conditions of 

oxidative stress via the inactivation of their thiols.  In our 

laboratory, we have observed that under in vitro conditions, 

organoselenium such as diphenyl diselenide inhibits 

sulfhydryl enzymes (Nogueira and Rocha, 2004, 2010, 2011). 

In fact of note is the fact that the inhibitory effect of these 

organoselenium compounds is in the micromolar range 

(Borges et al., 2005, Kade et al., 2008, 2009c). In order to 

establish the involvement of thiols in the inhibitory effect of 

organoselenium compounds on the activity of these 

sulfhydryl enzymes, exogenous thiols such as dithiothreitol 

have been used to recover the inhibition imposed by 

organoseleniums (Borges et al., 2005, Kade et al., 2008). 

Consequently, we can speculate that under in vivo 

conditions organoselenium compounds will have strong 

inhibitory effect on the activities of this class of enzymes. 

However, elegant experimental data have consistently 

shown that under in vivo conditions, organoselenium 

compounds protects these sulfhydryl enzymes especially 

under conditions of oxidative stress. In this regard, we 

reported that when mice were injected subcutaneously with 

diphenyl diselenide or dicholesteroyl diselenide previously 

dissolved in soya bean oil at chronic doses of 0.5 mmol kg⁻¹ 

body weight for four consecutive days, the activities of 

cerebral Na+/K+-ATPase were not markedly inhibited by 

both diselenides, suggesting that this cerebral enzyme may 

not be a molecular target of organodiselenides toxicity. We 

equally observed in this study that the administration of 

these organoseleniums in mice is accompanied by elevated 

levels of GSH. Generally when these enzymes were 

evaluated in models of oxidative stress related diseases such 

as diabetes wherein their levels were consistently decreased, 

we equally consistently observed that organoselenium 

interventions improves the activities of these enzymes with 

concomitant increase in the level of endogenous thiols 

evaluated as glutathione (Kade et al., 2009, 2009a, 2010; 

Barbosa et al., 2006, 2008). From these data and others 

(Nogueira and Rocha, 2011), we observed that the increase 

in the levels of these endogenous thiols necessitated by 

organoselenium intervention is suggestive and possibly 
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indicate that organoseleniums do not employ the classical in 

vitro GPx mimic activity to effect their pharmacological 

action under in vivo conditions. 

GPX MIMIC OF ORGANOSELENIUMS: PRE OR POST 

METABOLISM IN VIVO? 

In the light of the above and data obtained by other 

authors, we further argue that there is a strong but complex 

dynamics associated with the chemistry of organoselenium 

compounds under in vitro and in vivo conditions. Data 

obtained from studies conducted on lower organisms with 

organoseleniums suggests that in these organisms, they 

probably exhibited strong GPx-mimic. For example, the 

effect of diphenyl diselenide on GSH antioxidant capacity in 

a total radical trapping antioxidant parameter (TRAP) assay 

was studied by Zafarullah and his collaborators in yeast 

strains and they found that diphenyl diselenide attenuated 

the GSH antioxidant TRAP pattern in a time-dependent 

manner when an equimolar concentration of diphenyl 

diselenide and GSH is used, suggesting that it may react 

with GSH, forming an inactive adduct. They equally 

observed that when diphenyl diselenide was incubated with 

N-acetyl cysteine, the latter was able to neutralize and 

revert the pro-oxidant effect of diphenyl diselenide. They 

reasoned that diphenyl diselenide may either stimulate the 

increase of endogenous GSH biosynthesis or by a direct 

reaction with the drug (Zafarullah et al., 2003). We equally 

want to emphasize that at higher doses, organoselenium 

compounds can be toxic and this effect can be accompanied 

by decreased level of glutathione in animal tissues. A study 

by Rosa and collaborators (Rosa et al., 2005, 2007) may 

illustrate this point. In their work, they investigated the 

possible genotoxic effect of diphenyl diselenide in multiple 

organs (brain, kidney, liver, spleen, testes and urinary 

bladder) and tissues (bone marrow, lymphocytes) of mice 

using in vivo comet assay. They observed that the 

genotoxicity of diphenyl diselenide is accompanied with 

decreased glutathione in tissues tested. Equally, pre-

treatment of animals with N-acetyl-cysteine completely 

prevented diphenyl diselenide induced oxidative damage by 

the maintenance of cellular GSH levels, reinforcing the 

positive relationship of diphenyl diselenide induced GSH 

depletion and DNA damage.  

Consequently, we conclude that the pharmacological 

mechanism of organoseleniums whether in vitro or in vivo can 

be complex and is dependent on so many factors that are far 

from being fully understood. In this review, we have 

observed that although the utilization of glutathione in the 

antioxidant action of organoseleniums appears to be their 

major antioxidant mechanism, we speculate that the 

glutathione peroxidase mimic activity of organoseleniums 

shift depending on multifactorial considerations. It is 

noteworthy however, that the antioxidant action of 

organoseleniums in vivo may involve the activity of the non-

organic moiety of these organoseleniums. Consequently, 

there may be a sequential biotransformation of 

organoseleniums generating diverse intermediates and with 

each intermediate product utilizing diverse, but potent 

antioxidant mechanism which would apparently exclude 

glutathione peroxidase mimic that require the utilization of 

endogenous glutathione or other thiols. Equally, these 

metabolic intermediates may have some forms of positive 

interaction with the pathway leading to glutathione 

synthesis in vivo. 
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