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RESEARCH

Influence of incorporating geometric anisotropy on the construction of thematic 
maps of simulated data and chemical attributes of soil

Luciana Pagliosa Carvalho Guedes1*, Miguel Angel Uribe-Opazo1, 
and Paulo Justiniano Ribeiro Junior2

The study on spatial variability of soil properties performed through geostatistical techniques allow us to identify the 
spatial distribution of phenomena by means of a spatial model that considers degree of dependence among observed data, 
depending on distance and also the direction that separate them, if there is geometric anisotropy, in other words, a directional 
trend in spatial continuity. However, the main difficulty in decision making regarding the use of anisotropic spatial model 
focuses on its relevance to the parameters that express the geometric anisotropy in a spatial model exercise in relation to 
the estimation space. This study aims at identifying the degree of influence of geometric anisotropy on the accuracy of 
spatial estimation using simulated data sets with different sample sizes and soil chemical properties such as: Fe, potential 
acidity (H + Al), organic matter and Mn. Comparing the isotropic and anisotropic models, especially for smaller sample 
sizes (100 and 169) showed an increased sum of squares of differences between predictions anisotropy factor (Fa) equals 2. 
Furthermore, from Fa equals 2.5, over 50% of the simulations showed values of overall accuracy (OA) of less than 0.80 and 
values for the concordance index Kappa (K) and Tau (T) from 0.67 to 0.80, indicating differences between thematic maps. 
Similar conclusions were obtained for chemical properties of the soil, from Fa equals 2, showing that there are relevant 
differences regarding the inclusion or not of geometric anisotropy.
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INTRODUCTION

If a spatial dependence structure is a function only of 
the distance separating the locations observed, then 
the process that describes the spatial variability of the 
property is said isotropic. However, if this structure 
differs in relation to the direction, then the process is said 
anisotropic (Guedes et al., 2008).
	 Several authors differently classify the types of 
anisotropy. Isaaks and Srivastava (1989), considering 
transitive spatial models, i.e. models which have sill (or 
effective sill) define that when semivariograms show 
variation in range, sill or both, according to the vary 
directions, then it is identified the geometric, zonal and 
combined anisotropy. Journel and Huijbregts (1978) 
termed as zonal anisotropy, anisotropy of any kind other 
than geometric. Zimmerman (1993) classifies the types 
of anisotropy in four groups, based on which parameter 
model spatial differences occur as you change direction: 
anisotropy on the sill, in range, the nugget effect and 

slope (for models without sill). Furthermore, this author 
distinguishes two cases the anisotropy in the range: as 
geometric, when one direction has greater reach; or not 
geometric, when there are two or more directions with 
greater spatial continuity, i.e. greater range. 
	 However, there is a consensus of those authors (Journel 
and Huijbregts, 1978; Isaaks and Srivastava, 1989; 
Zimmerman, 1993) that relevant differences existing in 
the directions regarding the nugget effect and sill are little 
identified and generally do not indicate the presence of 
anisotropy, but the presence of correlation between the 
measurement errors and lack of stationarity. Moreover, 
they report that the most common form of anisotropy 
among the phenomena with spatial dependence is the 
geometric anisotropy.
	 The identification of the existence and type 
of anisotropy can be preliminarily made by the 
construction of directional semivariograms (Guedes et 
al., 2008). Conventional directions used to build these 
semivariograms are 0º, 45º, 90º and 135º, with a tolerance 
radius of 22.5°, following the system of azimuth 
direction measurement, considering the North as being 
the direction 0°, varying the other directions clockwise. 
However, anisotropic spatial phenomena can be found 
in other directions (Isaaks and Srivastava, 1989), there 
being the need for constructing semivariograms in other 
directions.
	 Specifically in the case of geometric anisotropy, there 
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are two parameters defining this type of anisotropy: the 
direction of greater spatial continuity α, expressed in the 
azimuth system, and geometric anisotropy factor Fa = a2/
a1, being Fa > 1 (Diggle and Ribeiro Junior, 2007), and 
the a2 is the largest range of the model describing the 
semivariance function in α direction, which leads to the 
largest radius of spatial dependence; and a1 is the range 
of the model that describes the semivariance function 
toward lower spatial continuity α + 90°. The finding of 
the existence of geometric anisotropy and its subsequent 
incorporation into the spatial model are of paramount 
importance for the estimation of non-sampled locations 
by kriging. Because that will influence the shape of 
the estimation window to be used in the interpolation 
process, which will assign greater weight to points 
sampled towards greater spatial continuity. Therefore, 
the incorporation of this type of spatial anisotropy in the 
model will allow for greater accuracy in the construction 
of thematic maps that describe the spatial variability of 
the phenomenon under study. There are studies in the 
literature describing in detail the concept of anisotropy 
and the construction of anisotropic spatial models 
(Zimmerman, 1993; Chorti and Hristopulos, 2008; 
Guedes et al., 2008; Boisvert et al., 2009; Facas et al., 
2010). However, the main difficulty of the researchers on 
the use of anisotropic spatial models focuses on defining 
the importance of estimated parameters that express 
the geometric anisotropy in a spatial model (greater 
continuity angle and anisotropy factor), in relation to 
its influence on the spatial estimation. Thus, a question 
inherent to the identification process of anisotropy is: For 
which set of anisotropic parameters is unreasonable to 
assume the isotropy assumption?
	 In this context, the aim of this work is to identify what 
is the influence of geometric anisotropy in the accuracy 
of spatial estimation of soil chemical properties. Thus, to 
validate the results to be obtained for the soil attributes, 
it will be also evaluated the influence of geometric 
anisotropy in simulated datasets with different sample 
sizes and for which values of their anisotropy factor there 
is a relevant difference in determining thematic maps.

MATERIAL AND METHODS

For the study of Monte Carlo simulation, four regular 
sampling configurations were considered: 10 × 10, 13 × 
13, 15 × 15, 17 × 17, with respectively 100, 169, 225 and 
289 sampling points. To these were simulated datasets, 
which represent embodiments of multivariate stochastic 
processes, assuming Gaussian stationary variables, with a 
linear space model expressed by:
                  Z(si) = μ(si) + ε(si),     i = 1,..., n	 [1]
in which μ(si) is the deterministic term of the model, 
represented by a constant mean; Z(si) corresponds to 
the observed values of the variable under study in the n 
known locations, denoted by the vector si = (xi yi)t, with 

i = 1,…, n; ε(si) represents the stochastic term with mean 
zero, i.e. E[ε(si)] = 0, and the variation between points in 
space, separated by the Euclidean distance ||h||, such h = 
si – sj, is determined by a covariance function C[||h||] = 
cov[ε(si), ε(si)], i = 1,..., n.	
	 If the variable under study presents isotropy, then the 
covariance function is associated with the semivariance 
function by the following relationship:
                       γ(||h||) = C(||h||) – C(||0||)	 [2] 
	 In this study the simulated datasets represent 
Gaussian stationary variables with presence of geometric 
anisotropy. Thus, it was assumed that:
                             γ(||h*||) = γ(||Ah||),	 [3]
with h* = Ah = A(si – sj) expressing a linear transformation 
(rotation and contraction) applied to n sampling locations, 
such that:
		  [4]

	 Thus, for each of the sample configurations were 
simulated eight datasets from spatial models with 
geometric anisotropy, considering eight values for the 
anisotropy factor from an equidistant sequence of values, 
with lower value equal to 1.5 and greater value equal to 
5. For each combination of sample configuration size an 
anisotropy factor value were simulated 200 datasets, 100 
of those with anisotropic exponential model and 100 with 
anisotropic spherical model, with semivariance function 
described in Equation (3), considering the greater spatial 
continuity angle (α) equals 0° in the azimuth system. 
Moreover, were considered in these anisotropic models, 
the range, nugget effect (ϕ1 ≥ 0) and sill ϕ1 + ϕ2, being ϕ2 ≥ 
0, denoted respectively by the ordered tender (ϕ1,  ϕ1 + ϕ2, 

a) equals to (0, 10, 45).             .
	 In each simulated dataset, with geometric anisotropic 
spatial dependence structure, was performed the spatial 
interpolation by the kriging technique, in a regular 
sampling grid consisting of 1600 sample points. To 
perform this interpolation, we first considered the 
anisotropic model with real parameters. Then, assuming 
α as the direction of greater spatial continuity, the 
parameters that define the anisotropic spatial model 
were estimated by the method of maximum likelihood: 
anisotropy factor, range, nugget effect and sill. Thus, for 
the estimate anisotropic model, the spatial prediction of 
the same mesh with 1600 points previously described was 
performed.
	 Furthermore, it was estimated for each simulated 
dataset, an isotropic model by the method of maximum 
likelihood, and by means of this model, was performed 
a spatial prediction of the same sampling grid composed 
of 1600 points which have been estimated using the 
anisotropic models, with real and estimated parameters. 
To determine the influence of the incorporation of 
geometric anisotropy in the spatial model exerts in the 
spatial estimation and, to identify to which sample sizes 
and values of anisotropy factor in the anisotropic model, 

A = ( )– sin(α)
cos(α)

Fa/    cos(α)
sin(α)

Fa/
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there is a considerable difference in the spatial estimation; 
the sets of estimated values in the sample grid of 1600 
points (considering the isotropic and anisotropic models) 
were compared on the following measures: square sum 
of differences of the estimated values and measures of 
accuracy: Overall accuracy (OA), Kappa Index (K) and 
Tau concordance index (T), which aim at comparing the 
thematic maps generated by the two interpolations with 
the same rating from the error matrix (De Bastiani et al., 
2012). The error matrix was constructed, considering 10 
intervals of values or classes. Each element of the error 
matrix represents the area belonging to the class i from 
the model map and class j from the reference map.
	 The geostatistical analysis, the identification of 
anisotropy and the analysis of the influence exerted by 
the incorporation of spatial anisotropy in the spatial 
estimation were also performed on a set of real data 
from an experimental area located in Eloy Gomes 
Research Center of Cooperativa Central Agropecuária 
e Desenvolvimento Ltda (COODETEC) in Cascavel, 
Paraná. The total experimental area of 1.74 ha, with soil 
classified as Oxysol. This area was divided into a regular 
grid with 256 plots with dimensions of 7.20 × 7.20 m, 
using as sampling design named as stratified systematic 
unaligned sampling (Souza et al., 1999). Since these 256 
plots, 128 plots received localized management and 128 
plots had no localized management, using one. The area 
was planted with soybeans and data used in this work are 
related to soil chemical properties showed that geometric 
anisotropy among all chemical attributes surveyed. These 
being: Fe, potential acidity (H + Al), organic matter 
(OM) and Mn, from samples collected in 1998 and 2002, 
considering the 128 plots that received no localized 
management.
	 The data sets under study were obtained by performing 
routine chemical analysis, performed in the laboratory for 
soil analysis COODETEC in representative samples from 
each plot, obtained by mixing four subsamples from the 
plot, taken in the layer from 0.0 to 0.20 m depth, within a 
radius of 0.25 m. Fe and Mn were extracted by Mehlich-1 
with 10 cm3 soil samples to 100 cm3 solution during 16 h 
decanting; H + Al was obtained in buffer solution of pH 
7.5 SMP; and OM was determined by the Walkley Black 
method.

	 Obtaining the simulated datasets and the geostatistical 
analyzes were made in the software R (R Development 
Core Team, 2012) using the module geoR (Ribeiro Jr. and 
Diggle, 2012).

RESULTS AND DISCUSSION

Analysis of simulated data
Table 1 shows the percentage of simulations classified into 
values intervals for the similarity measures, comparing 
the spatial estimation performed using anisotropic 
exponential models with actual and estimated parameters. 
It is noteworthy that the results for the spherical model 
are not shown as these produced the same conclusions 
obtained for the exponential model. The intervals at which 
the values of global accuracy were classified correspond 
to the minimum level of accuracy (OA = 0.85) to show the 
similarity between the estimated values (De Bastiani et 
al., 2012). For the concordance indices of Kappa and Tau, 
according to Krippendorff (1980), the intervals in which 
the values of these measures were classified correspond 
to low, medium and high similarity among the values 
estimated by the two anisotropic models.
	 This table shows that even for high values of 
anisotropy factor (3.5 and 4.5) there is a high similarity 
between the maps generated with the values obtained 
by spatial estimation using anisotropic models with 
actual and estimated parameters. Comparing these 
measurements it is observed that most of the simulations 
presented OA values higher than or equal to 0.85 and 
values of concordance indices of Kappa and Tau higher 
than or equal to 0.80. The same results are presented in 
the Boxplot graphs shown in Figure 1 for these similarity 
measures, grouped according to the anisotropy factor, 
considering all the simulated values of the anisotropy 
factor. The dashed lines in these graphs indicate the 
extreme values of the ranges that classify these measures 
according to the levels of accuracy previously described.	
	 In each of the graphs shown in Figure 1, the first 
Boxplot corresponds to the referred measures of 
similarity for every sample size by comparing the 
spatial estimates of anisotropic models with actual and 
estimated parameters considering an anisotropy factor 
equal to 1, i.e. not considering the presence of anisotropy. 

Table 1. Percentage of simulations in which their spatial estimation was classified into intervals of values for accuracy measurements, comparing 
the spatial estimation using the anisotropic model with actual and estimated parameters, grouped according to anisotropy factor (Fa) and 
simulated sample size.

3.5	 100 	 18	   82	 2	 13	   85	 1	 10	   89
	 169	   4	   96	 1	   2	   97	 0	   2	   98
	 225	   2	   98	 0	   1	   99	 0	   1	   99
	 289	   0	 100	 0	   0	 100	 0	   0	 100

4.5	 100 	 18	 82	 2	 12	   86	 2	   8	   90
	 169	   6	 94	 1	   4	   95	 1	   2	   97
	 225	   1	 99	 0	   0	 100	 0	   0	 100
	 289	   1	 99	 0	   1	   99	 0	   1	   99

Fa [0; 0.85] [0.85; 1] [0; 0.67] [0.67; 0.8] [0.8; 1] [0; 0.67] [0.67; 0.8] [0.8; 1]
Sample 
size (n)

Overall accuracy (OA) Kappa (K) Tau (T)
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Table 2. Percentage of simulations in which their spatial estimation was classified into intervals of values for accuracy measurements, comparing 
the spatial estimation using the anisotropic model with actual and estimated parameters, grouped according to anisotropy factor (Fa) and 
simulated sample size.

3.5	 100 	 100	   0	   4	 88	   8	 3	 84	 13
	 169	   77	 23	   0	 50	 50	 0	 42	 58
	 225	   69	 31	   0	 50	 50	 0	 25	 75
	 289	   61	 39	   0	 15	 85	 0	 96	   4

4.5	 100 	 100	   0	 15	   1	 84	 8	   4	 88
	 169	   93	   7	   1	 78	 21	 1	 70	 29
	 225	   91	   9	   1	 72	 27	 0	 52	 48
	 289	   73	 27	   0	 57	 43	 0	 75	 25

Fa [0; 0.85] [0.85; 1] [0; 0.67] [0.67; 0.8] [0.8; 1] [0; 0.67] [0.67; 0.8] [0.8; 1]
Sample 
size (n)

Overall accuracy (OA) Kappa (K) Tau (T)

Table 3. Percentage of simulations in which their spatial estimation was classified into intervals of values for accuracy measurements, comparing 
the spatial estimation using the anisotropic model with actual and estimated parameters, grouped according to anisotropy factor (Fa) and 
simulated sample size.

3.5	 100 	 86	 14	 30	 51	 19	 24	 48	 28
	 169	 79	 21	   4	 56	 40	   2	 44	 54
	 225	 68	 32	   4	 42	 54	   3	 30	 67
	 289	 53	 47	   0	 32	 68	   0	 19	 81

4.5	 100 	 91	   9	 44	 44	 12	 35	 50	 15
	 169	 84	 16	 10	 67	 23	   6	 64	 30
	 225	 84	 16	   6	 61	 33	   3	 53	 44
	 289	 70	 30	   1	 53	 46	   0	 43	 57

Fa [0; 0.85] [0.85; 1] [0; 0.67] [0.67; 0.8] [0.8; 1] [0; 0.67] [0.67; 0.8] [0.8; 1]
Sample 
size (n)

Overall accuracy (OA) Kappa (K) Tau (T)

Thus, when the geometric anisotropy was incorporated 
into the structure of spatial dependence Fa = 1, it was 
applied a rotation in spatial coordinates that does not 
alter the spatial structure under study, considering that 
the area of ​​spatial dependence is circular and in any 
direction, there is the same radius of spatial dependence 
in a model isotropic (Diggle and Ribeiro Jr., 2007). This 
result is confirmed by the first Boxplot shown in each of 
the graphs depicted in Figure 1, which shows that more 
than 75% of the simulations obtained similarity measures 
(OA, K and T) greater than 0.90, which indicates high 
similarity between the maps that would be generated by 
the spatial estimation.
	 However, all graphs shown in Figure 1 show that 
especially for smaller sample sizes (100 and 169) there is 
a high variability of these measures of similarity, with the 

presence of some low values (outliers) in approximately 
10% of the simulations. These outliers occurred in 
simulations where there was an overestimation of the 
anisotropy factor (ratio between the estimated and 
simulated factor anisotropy higher than 2).
	 Tables 2 and 3 show the percentage of simulations 
classified into values intervals for the similarity measures, 
comparing the spatial estimation performed using the 
isotropic exponential model with parameters estimated 
using anisotropic models with real parameters (Table 2) 
and with estimated parameters (Table 3), whereas the 
same intervals of similarity classification described above 
in Table 1.
	 Tables 2 and 3 show that for the smallest simulated 
sample sizes (100 and 169) there was a relevant difference 
in spatial estimation performed by models that incorporate 

Figure 1. Boxplot graphs grouped by anisotropy factor and sample size for: (a) Overall accuracy (OA), (b) concordance index of Kappa and (c) 
Tau, relative to comparison of spatial estimations performed by anisotropic spatial model with real and estimated parameters for all simulations.
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or not a geometric anisotropy for the anisotropy factor 
equal to 3.5 and 4.5. From that anisotropy factor, there was 
a considerable increase in the percentage of simulations 
that had overall accuracy values less than 0.85 and index 
Kappa and Tau with values between 0.67 and 0.8.Thus, 
through these results and the thematic maps presented in 
Figures (2 and 3), we have that for smaller sample sizes 
(100 and 169) and the anisotropy factor equal to 3.5, there 
are differences in classifications of generated thematic 
maps considering isotropic and anisotropic models.
	 Moreover, the same conclusions are also evidenced 
in the Boxplot graphs shown in Figures 6 and 7, which 
describe the values of these measures of accuracy in 
all simulations, grouped according to anisotropy factor 
and sample size, comparing the similarity between the 
maps generated with the isotropic model and anisotropic 
models. 
	 Thus, these graphs show that for all sample sizes 
regarded, with increasing anisotropy factor, the values of 
these measures of accuracy are decreased by comparing 
the isotropic and anisotropic models. Furthermore, it is 
evident that for smaller sample sizes (100 e 169), there 
are differences in the accuracy of measurements from 
the anisotropy factor of 2.5, most of the simulations. 
These results are fundamental for studies on the spatial 
characteristics of a high cost in sample analysis. Eg, 
research involving the study of soil properties, whose 
experiments become impractical for a high sample 

density (Guedes et al., 2011).
	 However, Figures (4 and 5) and Figures 6 and 7 
show that for larger sample sizes (225 and 289), these 
accuracy measurements show no significant differences 
in spatial estimation for anisotropy factors less than 4.5. 
Figure 8 to 11 show the Boxplot graphs of the sum of 
squares of the differences between the estimated values 
of the regionalized variable at non-sampled locations, 
comparing these models with each other. These graphs 
show that comparing the spatial estimations made by 
the anisotropic models (Figure 8a, 9a, 10a and 11a) for 
the same sample size, the values of the sums of squares 
were similar, regardless of the value of anisotropy factor, 
indicating regularity concerning to the spatial difference 
between the estimations made by anisotropic models with 
actual and estimated parameters. 90% of all simulations, 
regardless of anisotropy factor and sample size, exhibit a 
sum of squares of differences smaller than 150, including 
with Fa = 1 that do not alter the spatial structure under 
study. Furthermore, with increasing sample size, there 
was reduction of the sum of squares of differences 
between the estimated values at non-sampled locations 
using the anisotropic model with actual parameters and 
the anisotropic model with estimated parameters. Thus, 
regardless of the value of the anisotropy factor, when 
there is increased sample size, there is also a greater 
similarity in spatial estimation, in both models used for 
this estimation.

Figure 2. Map of variability for an example of simulated dataset with spatial dependence, n equals 100 and anisotropy factor equal to 3.5, in 
the spatial estimation model: (a) anisotropic with real parameters; (b) anisotropic with estimated parameters and (c) isotropic with estimated 
parameters.

Figure 3. Map of variability for an example of simulated dataset with spatial dependence, n equals 169 and anisotropy factor equal to 3.5, in 
the spatial estimation model: (a) anisotropic with real parameters; (b) anisotropic with estimated parameters and (c) isotropic with estimated 
parameters.



419418 CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 73(4) OCTOBER-DECEMBER 2013CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 73(4) OCTOBER-DECEMBER 2013

Figure 4. Map of variability for an example of simulated dataset with spatial dependence, n equals 225 and anisotropy factor equal to 3.5, in 
the spatial estimation model: (a) anisotropic with real parameters; (b) anisotropic with estimated parameters and (c) isotropic with estimated 
parameters.

Figure 5. Map of variability for an example of simulated dataset with spatial dependence, n equals 289 and anisotropy factor equal to 3.5, in 
the spatial estimation model: (a) anisotropic with real parameters; (b) anisotropic with estimated parameters and (c) isotropic with estimated 
parameters.

Figure 6. Boxplot graphs grouped by anisotropy factor and sample size for: (a) Overall accuracy (OA), index of Kappa (b) and Tau (c), 
comparing the maps generated by the estimated isotropic model and the anisotropic model with real parameters.

Figure 7. Boxplot graphs grouped by anisotropy factor and sample size for: (a) Overall accuracy (OA), index of Kappa (b) and Tau (c), comparing 
the maps generated by the anisotropic and isotropic models with estimated parameters.
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Figure 8. Boxplot graphs grouped by anisotropy factor for sums of squares (SQ) of differences between the spatial estimates performed with 
100 sampling points. The figures compare (a) the anisotropic models with actual and estimated parameters by this measure; (b) anisotropic with 
actual parameters and estimated isotropic and (c) anisotropic and isotropic models with estimated parameters.

Figure 10. Boxplot graphs grouped by anisotropy factor for sums of squares (SQ) of differences between the spatial estimates performed with 
225 sampling points. The figures compare (a) the anisotropic models with actual and estimated parameters by this measure; (b) anisotropic with 
actual parameters and estimated isotropic and (c) anisotropic and isotropic models with estimated parameters.

Figure 9. Boxplot graphs grouped by anisotropy factor for sums of squares (SQ) of differences between the spatial estimates performed with 
169 sampling points. The figures compare (a) the anisotropic models with actual and estimated parameters by this measure; (b) anisotropic with 
actual parameters and estimated isotropic and (c) anisotropic and isotropic models with estimated parameters.

Figure 11. Boxplot graphs grouped by anisotropy factor for sums of squares (SQ) of differences between the spatial estimates performed with 
289 sampling points. The figures compare (a) the anisotropic models with actual and estimated parameters by this measure; (b) anisotropic with 
actual parameters and estimated isotropic and (c) anisotropic and isotropic models with estimated parameters.
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	 Comparing the sums of squares of the differences 
between the estimated values at non-sampled locations 
performed by the anisotropic model with real parameters 
and isotropic with estimated parameters (Figures 8b, 9b, 10b 
and 11b), it is observed that regardless of the sample size, 
with increasing anisotropy factor there was increased sums 
of squares, mainly from the anisotropy factor equal to 2. 
	 This increase in the sum of squares is also found by 
the average rate of variation of the sum of squares of 
the differences described above, comparing the results 
obtained for this measure considering the anisotropy 
factor equal to 1 (no anisotropy) with the other anisotropy 
factors (Table 4). Thus, it is observed that from the 
anisotropy factor equal to 2 in all sample sizes, there 
was a large increase of the average change of the sums 
of squares, showing significant differences in spatial 
estimation when considering to their achievement the 
incorporation or not of geometric anisotropy. 
	 Through the Boxplots of squared sums of differences 
in spatial estimation, comparing the spatial estimation 
performed by anisotropic and isotropic models, both with 
estimated parameters (Figures 8c, 9c, 10c and 11c), it 
is observed that from the sample size equal to 169 and 
anisotropy factor equal to 1.5, there was increase of spatial 
differences between the estimates performed by the two 
models. These results are also verified by the high values 
of average rates of variation of differences obtained in 

the spatial estimations by comparing the anisotropy factor 
equal to 1 with the other values for this factor (Table 5). 
However, in approximately 10% of the simulations, there 
were high values of the sums of squares of the differences 
in spatial estimation, comparing the anisotropic model 
with estimated parameters and the others. These high 
values occurred in the simulations that had overestimation 
of the anisotropy factor.

Analysis of soil chemical properties
Figure 12 shows the graphs that represent the values of 
the variables for the sampled plots in the georeferenced 
study area, and the values of variables are ranked at the 
same amplitude interval. These graphs shows that the 
variables Fe, OM, and H + Al (Figures 6a, 6c and 6d) 
have groups of points with the same classification which 
extend in the direction of 90° (azimuth system) indicating 
the presence of geometric anisotropy in that direction. 
For variable Mn (Figure 6b), there is a high number of 
points with the same classification which extend toward 
135° (azimuth system), thus indicating the presence of 
geometric anisotropy in that direction.
	 Table 6 shows the results of univariate geostatistical 
analysis with spatial parameters estimated for the 
variables Fe, Mn, OM, and H + Al, for isotropic and 
anisotropic geometric models. According to the criteria of 
cross-validation and the maximum value of the logarithm 

Table 4. Descriptive Statistics of the average rate of change, comparing 
the results obtained with the anisotropy factor equal to 1, with the other 
anisotropy factors compared to the sum of square of differences in spatial 
estimates, obtained by anisotropic models with real parameters and 
isotropic with estimated parameters.

1.5	   5.04	 197.78	 20.22	 90.66	 22.56	 51.06	 21.71	 42.28
2.0	 34.20	 154.84	 41.91	 70.43	 39.43	 40.51	 35.00	 36.44
2.5	 46.96	 154.84	 49.56	 56.63	 45.85	 32.60	 40.79	 29.06
3.0	 52.38	 106.81	 52.43	 45.03	 47.78	 27.31	 42.59	 23.01
3.5	 54.39	   90.83	 52.85	 36.75	 47.36	 23.57	 42.26	 19.12
4.0	 54.58	   74.92	 51.86	 31.03	 46.14	 20.44	 41.03	 16.31
4.5	 53.69	   69.42	 50.17	 27.05	 44.42	 18.18	 39.38	 14.31
5.0	 51.88	   61.71	 48.22	 24.06	 42.51	 16.38	 37.62	 12.79
S: standard deviation.

Fa Mean
100

S

Sample size

Mean
169

S Mean
225

S Mean
289

S

Table 5. Descriptive Statistics of the average rate of change, comparing 
the results obtained with the anisotropy factor equal to 1, with the 
other anisotropy factors compared to the sum of square of differences 
in spatial estimates, obtained by anisotropic and isotropic models, both 
with estimated parameters.

1.5	 133.60	 471.04	 77.13	 66.01	 65.78	 64.79	 56.11	 47.01
2.0	 128.80	 213.60	 86.01	 55.36	 73.25	 55.14	 65.71	 36.51
2.5	 130.40	 150.85	 84.97	 49.77	 72.03	 44.76	 65.81	 30.23
3.0	 131.70	 149.27	 81.25	 44.80	 68.61	 35.08	 62.05	 25.06
3.5	 156.00	 327.64	 76.71	 39.74	 64.40	 28.98	 57.72	 21.38
4.0	 148.50	 283.48	 72.23	 35.94	 60.47	 24.91	 53.54	 18.72
4.5	 144.00	 262.29	 68.00	 32.89	 56.76	 25.91	 49.83	 16.65
5.0	 131.40	 225.43	 64.21	 30.50	 53.31	 19.69	 46.35	 14.57
S: standard deviation.

Fa Mean
100

S

Sample size

Mean
169

S Mean
225

S Mean
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Figure 12. Graph of the spatial representation of plots sampled in the area under study, classified into intervals of equal amplitude for the 
variables: (a) Fe, (b) Mn, (c) and organic matter (OM) (d) H + Al.
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Figure 13. Thematic map of the variables: Fe, with (a) isotropic and (b) geometric anisotropic model; Mn, with (c) isotropic and (d) geometric 
anisotropic model; organic matter (OM), with (e) isotropic and (f) geometric anisotropic model; and H+Al, with (g) isotropic and (h) geometric 
anisotropic model.

of likelihood function, the spherical model was the best 
fit by the method of maximum likelihood, including 
the estimates for the anisotropic model, the anisotropy 
factor. The directions of greater spatial continuity 
were fixed, considering the conventional directions 0º, 
45º, 90º e 145º. In all models, the ranges (a) obtained 
represent the distance at which the sample points are 
correlated. According to the values of the nugget effect 
on the coefficient of relative nugget effect (EPR), that 
mathematically expresses the proportion of the nugget 
effect in relation to the sill and indicates the degree of 
spatial dependence there was strong spatial dependence 
for Mn, H + Al, on all isotropic or anisotropic models 
and for OM considering the isotropic model (Souza et al. 
1999; 0%  EPR ≤ 25%). There was a moderate spatial 
dependence for Fe in isotropic and anisotropic models 
and for OM, considering the anisotropic model (Souza et 
al., 1999; 25% ≤ EPR ≤ 75%).

	 Comparing the results of the estimates of parameters 
of isotropic and anisotropic models, it is observed that 
only for Mn there was estimated anisotropy factor less 
than 2, considering the following directions of greater 
spatial continuity: 90º to the variables Fe, OM and H + 
Al, and 135º for Mn. Moreover, when incorporated into 
the geometric anisotropy in the structure expressing the 
spatial dependence, there is a decrease in the values of 
estimates of range and a similarity on the sill estimates 
and nugget effect estimates.
	 Through results concerning the comparison of 
estimates obtained by spatial isotropic and anisotropic 
models (Table 7), there is a small difference between the 
average variance estimation of spatial, which indicates 
similarity regarding the reliability in the spatial estimation 
for the two models (isotropic and anisotropic). However, 
through the values obtained for similarity measures, it is 
observed that only the variable Mn, with anisotropy factor 
estimated less than 2, showed high similarity between 

Table 6. Spherical spatial models adjusted and the values of their 
parameters estimated by ML.

Fe	 Isotropic	 28.19	   62.10	 37.85	 45.39		
	 Anisotropic	 21.89	   63.15	 30.55	 34.66	   90º	 9.81
Mn	 Isotropic	 15.87	   97.55	 36.96	 16.27		
	 Anisotropic	 12.79	 109.92	 33.00	 11.64	 135º	 1.57
OM	 Isotropic	   3.68	   18.68	 87.70	 19.70		
	 Anisotropic	   4.24	   15.26	 70.29	 27.79	   90º	 3.66
H+Al	 Isotropic	   0.33	     1.49	 47.50	 22.14		
	 Anisotropic	   0.17	     1.50	 34.42	 11.33	   90º	 3.27

a: estimated range; ϕ1: estimated nugget effect, (ϕ1 + ϕ2): estimated threshold 
and EPR = 100 ϕ1 /(ϕ1 + ϕ2 ) is the relative nugget effect.
ML: maximum likelihood; OM: Organic matter; EPR: coefficient of relative 
nugget effect.

Model α Fa

EPR
(%)ϕ̂1 âˆ ˆϕ1 + ϕ2Variable

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

Table 7. Spherical spatial models adjusted with their respective values of 
average variance of the spatial estimation (σ2) and similarity measures in 
the comparison between isotropic and anisotropic models to regarding 
the spatial estimation.

Fe	 isotropic	 42.54	 0.78	 0.74	 0.76
	 anisotropic	 43.65			 
Mn	 isotropic	 43.48	 0.86	 0.83	 0.84
	 anisotropic	 36.75			 
OM	 isotropic	   6.08	 0.78	 0.73	 0.75
	 anisotropic	   5.76			 
H+Al	 isotropic	   0.63	 0.70	 0.67	 0.67
	 anisotropic	   0.41			 

ModelVariable

OA: Overall accuracy; concordance index of Kappa (K) and Tau (T); OM: 
organic matter.

KOA Tσ2̄

¯
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the maps generated by the spatial estimation, with OA 
value above 0.85 and the concordance indices of K and T 
above 0.80. The remaining variables that had a estimated 
anisotropy factor greater than 2, showed values of OA 
less than 0.85, indicating a low accuracy regarding the 
similarity between the maps generated for the estimated 
values (De Bastiani et al., 2012), and the values of K 
and T between 0.67 and 0.80; indicating mean accuracy 
regarding the maps comparison (Krippendorff, 1980). 
Thus, it can be verified differences in the classification of 
thematic maps, regarding the incorporation of geometric 
anisotropy, and these results are analogous to the results 
observed in the simulations with smaller sample sizes.
	 These differences presented in the spatial estimation, 
regarding the incorporation of geometric anisotropy, can 
also be visualized on the thematic maps (Figure 13). In 
thematic maps constructed from the anisotropic models 
(Figures 13b, 13d, 13f and 13h), there is greater spatial 
continuity of the subregions in the directions of greater 
spatial continuity, which are more elliptical. In thematic 
maps generated by isotropic models (Figures 13a, 13c, 
13e, and 13g) in general, the size of the subregions is 
circular.

CONCLUSIONS

The analyses performed for the simulations and real 
data of soil chemical properties showed that when the 
presence of geometric anisotropy in georeferenced 
variables is observed, this should be incorporated into 
the spatial linear model, especially for smaller sample 
sizes and when the anisotropy factor is greater than two. 
Therefore, the results obtained in the spatial estimation of 
these variables in the study area show relevant differences 
regarding the incorporation or not of anisotropy in the 
study of spatial variability through the spatial estimation. 
The incorporation of this feature will produce more 
reliable estimations that expressed greater detail in the 
thematic map of the sub-regions, better highlighting the 
spatial continuity of the attributes under study.
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