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Abstract  

Background: Support vector machine (SVM), a novel powerful machine learning technology, was 
used to develop the non-linear quantitative structure-property relationship (QSPR) model of the G/11 
xylanase based on the amino acid composition. The uniform design (UD) method was applied to 
optimize the running parameters of SVM for the first time. Results: Results showed that the predicted 
optimum temperature of leave-one-out (LOO) cross-validation fitted the experimental optimum 
temperature very well, when the running parameter C, Ɛ, and γ was 50, 0.001 and 1.5, respectively. 
The average root-mean-square errors (RMSE) of the LOO cross-validation were 9.53ºC, while the 
RMSE of the back propagation neural network (BPNN), was 11.55ºC. The predictive ability of SVM is a 
minor improvement over BPNN, but it is superior to the reported method based on stepwise regression. 
Two experimental examples proved the validation of the model for predicting the optimal temperature 
of xylanase. Conclusion: The results indicated that UD might be an effective method to optimize the 
parameters of SVM, which could be used as an alternative powerful modeling tool for QSPR studies of 
xylanase. 

Keywords: amino acid composition, optimum temperature, support vector machine, uniform design, 
xylanase 
 
 
 
 
INTRODUCTION 

Xylanase has a wide range of potential biotechnological applications. Recently the interest in xylanase 
has markedly increased due to the potential industrial uses, particularly in pulping and bleaching 
processes (Beg et al. 2001; Diaz et al. 2004; Oliveira et al. 2006). The thermo-alkalophilic conditions of 
xylanase-aided bleaching (60-80ºC, pH 8-10) combined with a high level of activity, demand a set of 
characteristics of xylanases, not usually found in native enzymes. An alternative for obtaining new 
thermostable enzymes is the modification of presently used xylanases to be more stable in extreme 
conditions. During the last twenty years, rational site-directed mutation (Moreau et al. 1994) and 
irrational directed evolution (Fenel et al. 2006) have become a routine approach for engineering 
xylanases to achieve this goal. Although, the so-called ‘semi-rational’ approach, which used 
computational techniques to perform in silico screening of protein sequences or to enhance the 
efficiency of directed evolution, has become an emerging area in protein engineering. However, it has 
not been employed in xylanase engineering. This approach has been applied with some success 
(Hayes et al. 2002; Mildvan, 2004), and researchers think that it may pave the way to exciting areas of 
enzyme research including efficient engineering of existing biocatalysts (Chica et al. 2005). Protein 
design algorithms (mathematical models) that provide quantitative structure-property relationship 
(QSPR) of proteins are the core part of the ‘semi-rational’ approach. 
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The support vector machine (SVM) is a new and very promising classification and regression method 
developed by Vapnik (1998). It has been shown that SVM has two distinct features. Firstly, it has high 
generalization ability. Secondly, it requires only small size of training samples. According to some 
literatures, SVM has shown promising results on several biological problems and is becoming 
established as a standard tool in bioinformatics (Ward et al. 2003; Cai et al. 2004; Chen et al. 2006). 

In the present investigation, SVM, as a novel machine learning technique, was used to establish a 
model for predicting the optimum temperature of xylanase in G/11 family. During the process, the 
uniform-design method was applied to optimize the running parameters of SVM. The aim was to 
establish a new QSPR model and to confirm the possibility of predicting the optimum temperature of 
xylanases. The performances of SVM were better than that of back propagation neural network 
(BPNN) and the reported models, and may be useful for computer virtual screening in engineering for 
more thermostable new xylanases. 

MATERIALS AND METHODS  

Dataset construction 

To reduce the redundancy, we downloaded the sequences of xylanases from UniProt, for it contains 
records with full manual annotation or computer-assisted, manually-verified annotation performed by 
biologists and based on published literature and sequence analysis (Bairoch et al. 2005). The optimum 
temperatures of xylanases obtained from Liu’s work (Liu et al. 2006) have been shown in Table 1. 
Altogether, 25 xylanase sequences and their corresponding optimum temperatures were obtained. 

Table 1. Observed and calculated temperature values of xylanase in family G/11. 

ID Topt Tcal1 Tcal2 TRSVM TLSVM TBPNN 

P29127 40.00 52.27 40.83 40.04 40.24 40.07 
P36218 40.00 36.67 40.73 40.05 40.20 40.77 
P17137 43.00 52.65 42.42 43.03 43.18 44.15 
Q06562 45.00 40.52 45.01 45.05 45.24 45.48 
P36217 45.00 50.02 47.04 45.06 44.80 43.88 
P29126 50.00 45.17 49.22 50.05 49.80 49.28 
P18429 50.00 52.13 53.93 50.00 49.75 51.61 
P00694 50.00 47.12 49.32 50.04 49.80 50.14 
P48793 50.00 46.63 47.04 50.08 50.25 50.52 
P33557 50.00 54.99 51.26 50.05 50.19 51.12 
P55328 50.00 54.99 54.22 50.06 51.80 54.72 
P55333 54.00 54.82 54.18 54.04 54.25 53.51 
P35811 55.00 49.47 55.31 54.95 54.77 55.57 
P45796 55.00 58.23 56.50 55.03 55.20 54.82 
P26220 55.00 52.38 55.04 55.04 54.78 54.99 
P26515 55.00 51.10 54.66 54.97 56.21 55.52 
P45705 55.00 55.56 53.83 54.99 54.81 55.43 
P09850 55.00 56.60 53.93 54.98 50.29 53.12 
P48824 55.00 57.96 54.08 54.95 55.19 54.84 
P55332 58.00 56.58 57.76 57.96 57.75 58.02 
P55334 60.00 63.10 59.99 59.96 60.22 60.12 
P55329 60.00 54.99 54.22 59.96 51.51 54.42 
P35809 65.00 63.24 64.62 64.98 64.79 64.30 
P33558 70.00 64.73 69.61 69.98 61.72 69.74 
O43097 82.00 72.37 82.39 81.98 76.84 82.25 

MAE 4.21 1.23 0.04 1.35 0.94 
RMSE 5.03 1.9 0.04 2.79 1.63 

ID: the accession number of xylanase in Swiss-Prot; Topt: the optimum temperature found in the literature at which the relative 
xylanase has the maximum activity; Tcal1 and Tcal2: the training temperature according to reference 12; TRSVM, TLSVM and TBPNN: the 
training temperature based on RBF support vector machines, linear support vector machines and back propagation neural network 
in our models; MAE: mean absolute error; RMSE: root-mean-square error. 
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Support vector regression (Cortes and Vapnik, 1995; Vapnik, 1998) 

SVM can be applied in both classification and regression; here we used support vector regression 
(SVR). In SVR, the basic idea is to map the data X into a higher-dimensional feature space F via a 
nonlinear mapping Ф and then to do linear regression in this space. Therefore, regression 
approximation addresses the problem of estimating a function based on a given data set G = {(xi, di)}i

n 
(xi is the input vector, di is the desired value, and n is the total number of data patterns), and SVM 
approximate the function using Equation 1:  

 

[Equation 1] 

Where Ф(x) is the high-dimensional feature space which is nonlinearly mapped from the input space x. 
The coefficients w and b are estimated by minimizing  
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Finally, the regression function given by Equation 1 has the following explicit form  

  

[Equation 5] 

Where nSV is the number of Support Vectors (SVs), ai, ai* are the introduced Lagrange multipliers and 
they satisfy the equality ai · ai* = 0,ai ≥ 0,ai* ≥ 0, and the kernel function K corresponding to  

  

[Equation 6] 

Linear and radial basis function (RBF, Gaussian function) kernels are two commonly used kernels in 
SVR (Smola and Schölkopf, 1998) and are given by Linear kernel 

 

[Equation 7] 

RBF kernel  

[Equation 8] 

Where γ is a constant, the parameter of the kernel, it controls the width of the Guassian kernel 
(although itself is not the width) and therefore, controls the generalization ability of SVM. The 
generalization performance of SVR depends on a good setting of parameters: C, Ɛ and the kernel type 
and corresponding kernel parameters. Here, uniform design is employed in optimizing the running 
parameters. 

Uniform design 

Uniform design (UD) was first proposed by Fang (1980), based on theoretic accomplishments in 
number-theoretic method. Generally speaking, UD is a form of ‘space filling’ design. Suppose that the 
experimental domain consists of s factors and h(x) is a response of the experiment. In many cases, we 
can assume this domain to be the unit cube Cs. The expectation value of h(x) over the experimental 
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Where V(h) is a measure of the variation of h and D(ρ) the discrepancy of set ρ. The inequality 
indicates that the more uniform set in ρ is over the experimental region, the more accurate the estimate 
Eh(x) provides to ĥ ( Zhang et al. 1998). Thus, obtaining experimental points that are most uniformly 
scattered in the domain is the key step in uniform design. Uniform design has its own features, such as 
its functional agility of arranging experiment runs and its robustness against model uncertainty. For 
more detail information, reference is Liang and Fang’s works (Fang and Yang, 2000; Liang et al. 2001). 

The overall performances of SVM and BPNN were evaluated in terms of the root-mean-square error 
(RMSE) and mean absolute error (MAE), which was defined as below.  

 

[Equation 10] 

  

[Equation 11] 

Where yi and ŷi stand for the actual value and training value (or predicted value), respectively. 

Cross-validation 

The performance and robustness of the models was evaluated by cross-validation. The jackknife test 
(leave-one-out, LOO) was used; it was deemed the most rigorous and objective with the least 
arbitrariness, as demonstrated by an incisive analysis in a recent review (Chou and Shen, 2007). We 
used 24 data points to train the models and tested it with the left one. This was repeated 25 times, 
leaving in turn a different data point out of the training set and using it to validate the resulting models. 

Software and computation environment 

To analyze the 20 amino acid compositions of xylanases, Bioedit software was used (version 5.0.9), 
and then each xylanase in the data set was characterized by a vector xi(i = 1,…, N). The input vector xi 
has 20 coordinates for the amino acid composition (in the percentage). The SVR and BPNN were 
performed by the software of WEKA, which is a java package providing an environment for 
implementation of a large number of machine learning and statistical algorithms (Frank et al. 2004). All 
the computations were carried out on a Pentium IV computer with a 2.7 GHz processor and 512M 
RAM. 

RESULTS  

Optimizing the parameters of linear kernel SVM based on UD 

Similar to other multivariate statistical models, the performances of SVM for regression depend on the 
combination of several parameters. They are penalty value C, Ɛ of Ɛ -insensitive loss function, the 
kernel type K, and its corresponding parameters. To get the best generalization ability, some strategies 
are needed for optimizing these factors. There are four possible choices of kernel functions, i.e. linear, 
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polynomial, radial basis function (RBF), and sigmoid function. For regression tasks, we selected linear 
and RBF kernel.  

For linear kernel, there are only two parameters, C and Ɛ. Here the UD method was employed in 
optimizing the combination of the parameters based both on LOO cross-validation and training. The 
UD table for 2 factors with 16 levels was used and the results were shown in Table 2. For linear kernel, 
we found that when the regularization parameter (C), and Ɛ -insensitive loss function (Ɛ) was 1 and 
0.005 respectively, the MAEs of LOO cross-validation and training were 7.56ºC and 1.35ºC, 
respectively, with an average MAE of 4.46ºC. The LOO cross-validation results of the 9th run (R9) were 
slightly better, but the training results of it were much worse. On the other hand, the training results of 
the 6th run (R6) were slightly better than our chosen run (R12), but the LOO cross-validation results of 
R6 were much worse (about 5.64ºC). From the results of R7, one can see that parameters should not 
be chosen only based on training error, this could easily lead to over-fitting. So the optimal C and Ɛ for 
linear SVM were finally chosen as 1 and 0.005. The training and LOO cross-validation results of linear 
SVM were shown in Table 1 and Figure 1. 

Optimizing the parameters of RBF kernel SVM based on UD 

For the RBF kernel, there are three parameters C, Ɛ and γ. Here the UD method was also employed in 
optimizing the combination of the parameters based both on LOO cross-validation and training. The 
UD table for 3 factors with 16 levels was used and the results were shown in Table 3.  

From the results of the Table 3, we can see that different combination of the three parameters might 
result in different MAE and RMSE values. When C, Ɛ and γ, were 50, 0.001 and 1.5 respectively, the 
MAEs of LOO cross-validation and training were 6.88ºC and 0.04ºC, respectively, with an average 
MAE of 3.46ºC. Although the LOO cross-validation results of the 5th run (R5) were slightly better (about 
0.28ºC), the training results of it were much worse (about 5.5ºC). From the results of R5, one can see 
that parameters should not be chosen only based on LOO cross-validation error. So the optimal C, Ɛ 
and γ for RBF SVM were finally chosen as 50, 0.001 and 1.5. The training and LOO cross-validation 
results of RBF SVM were also shown in Table 1 and Figure 1. 

Table 2. Uniform design of the two factors U16 (162) to optimize the combination of the parameters of SVM 
with linear kernel based on LOO cross-validation and training. 

Run no. 
Linear MAE RMSE 

C ε CV TR AV CV TR AV 
R1 0.005 0.1 6.80 6.32 6.56 9.58 8.89 9.24 
R2 1000 0.15 7.95 4.49 6.22 10.94 4.90 7.92 
R3 5000 0.05 21.86 2.10 11.98 52.81 2.47 27.64 
R4 0.5 0.2 8.00 5.07 6.54 11.11 5.86 8.49 
R5 0.1 0.4 8.06 7.26 7.66 10.96 9.05 10.01 
R6 100 0.00001 13.20 0.79 7.00 24.51 1.91 13.21 
R7 25000 0.001 266.52 0.80 133.66 634.23 1.84 318.04 
R8 5 1 10.08 9.84 9.96 11.97 11.48 11.73 
R9 0.05 0.0001 6.92 5.15 6.04 9.28 7.80 8.54 

R10 500 0.6 10.08 9.84 9.96 11.97 11.48 11.73 
R11 0.01 0.7 10.08 9.84 9.96 11.97 11.48 11.73 
R12 1 0.005 7.56 1.35 4.46 9.92 2.79 6.36 
R13 50000 0.3 7.86 1.35 4.61 10.58 2.79 6.69 
R14 50 0.5 10.08 9.84 9.96 11.97 11.48 11.73 
R15 10 0.01 8.80 1.00 4.90 15.40 1.77 8.59 
R16 10000 0.8 10.08 9.84 9.96 11.97 11.48 11.73 

CV: leave-one-out cross validation; TR: training; AV: average; MAE: mean absolute error; RMSE: root-mean-square error. The 
optimum values are highlighted. 
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According to Table 2 and Table 3, one can observe that many different combinations of parameters 
resulted in the same LOO cross-validation and training errors, which means that SVMs are not so 
sensitive to parameters. Meanwhile, the RBF kernel is superior to linear kernel, which was in 
accordance with some former researches for support vector regression tasks (Xue et al. 2004; Liu et al. 
2005). 

Compared with back propagation neural network (BPNN) 

Recently, a few studies have shown that SVM yielded better results than alternative machine learning 
techniques such as BPNN. In this study, we have compared the performance of SVM and BPNN with 
the same datasets. The architecture of BPNN was also optimized by UD and the results were shown in 
Table 4. During the process, the maximum iterations were appointed as 1000. According to Table 4, 
the learning rate (η), momentum parameter and the neuron number of the hidden layer was chosen as 
0.04, 0.6 and 11, respectively. The MAEs of LOO cross-validation and training were 7.73ºC and 
0.97ºC, respectively, with an average MAE of 4.35ºC. The training and LOO cross-validation results of 
BPNN were shown in Table 1 and Figure 1. 

According to Table 4, one can observe that different combinations of parameters resulted in different 
LOO cross-validation and training MAEs and RMSEs. This means that BPNN may be more sensitive to 
its running parameters when compared with SVMs, especially RBF SVM. And also, the LOO cross-
validation results of BPNN were widely different when different sets of training and LOO cross-
validation were employed. The maximum and minimum LOO cross-validation MAEs were 38.89ºC and 
0.2ºC, respectively, while the corresponding MAEs of RBF SVM were 27.44ºC and 0.03ºC. The 
predicted errors of all the 25 runs of BPNN and SVM are shown in Figure 2. For linear SVM, 13 
samples had small differences to their experimental optimal temperatures (│ ERROR│<5ºC), and RBF 
SVM also had 13 samples, while 11 samples had small differences to their experimental optimal 
temperatures in BPNN. The predicted RMSEs of linear SVM, RBF SVM and BPNN were 9.92ºC, 
9.55ºC and 11.52ºC, respectively. As analyzed above, it can be seen that the SVM based models 
showed minor robustness than BPNN. It was consistent with the inherent advantages over BPNN, 
which did not show robustness especially in the condition of only small amount of training samples 
were available. 

 

Fig. 1 The predicted temperatures vs the experimental optimal temperatures of BPNN and SVM. BPNN: 
back-propagation neural network; LSVM: support vector machine with linear kernel; RSVM: support vector machine 
with RBF kernel. It is the prediction results of the LOO cross validation. 
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Table 3. Uniform design of the three factors U15 (163) to optimize the combination of the parameters of SVM 
with RBF kernel based on LOO cross-validation and training. 

Run no. 
RBF MAE 

 
RMSE 

C ε Gamma CV TR AV   CV TR AV 
R1 1 0.9 1 10.08 9.84 9.96  11.97 11.48 11.73 
R2 0.01 0.005 0.07 6.48 6.28 6.38  9.13 9 9.07 
R3 10000 0.2 0.005 7.17 5.05 6.11  9.7 5.84 7.77 
R4 500 0.1 0.3 7.05 3.34 5.20  9.3 3.59 6.45 
R5 5 0.05 0.001 6.6 5.54 6.07  9.1 7.94 8.52 
R6 0.1 0.15 5 6.83 5.4 6.12  9.51 7.29 8.40 
R7 5000 0.6 2.5 10.08 9.84 9.96  11.97 11.48 11.73 
R8 1000 0.0001 0.03 16.22 0.38 8.30  35.62 1.59 18.61 
R9 0.05 0.7 0.01 10.08 9.84 9.96  11.97 11.48 11.73 
R10 25000 0.01 0.9 6.96 0.43 3.70  9.51 0.43 4.97 
R11 10 0.4 0.09 8.56 7.54 8.05  11.12 9.08 10.10 
R12 50000 0.8 0.1 10.08 9.84 9.96  11.97 11.48 11.73 
R13 0.005 0.5 0.5 10.08 9.84 9.96  11.97 11.48 11.73 
R14 100 1 0.05 10.08 9.84 9.96  11.97 11.48 11.73 
R15 50 0.001 1.5 6.88 0.04 3.46   9.55 0.04 4.80 
R16 0.5 0.00001 0.1 6.98 4.47 5.73  9.45 7.11 8.28 

CV: leave-one-out cross validation; TR: training; AV: average; MAE: mean absolute error; RMSE: root-mean-square error. The 
optimum values are highlighted. 

 

 

 

 
Table 4. Uniform design of the three factors U15 (153) to optimize the combination of the parameters of BPNN 
based on LOO cross-validation and training. 

Run no. 
Three factors MAE RMSE 

LR (η) MP NHL CV TR AV CV TR AV 
R1 0.15 0.65 19 10.03 1.68 5.86 17.23 2.07 9.65 
R2 0.07 0.8 17 9.95 1.36 5.66 12.46 1.82 7.14 
R3 0.04 0.6 11 7.73 0.97 4.35 11.52 1.64 6.58 
R4 0.09 0.45 14 8.61 1.05 4.83 11.98 1.64 6.81 
R5 0.5 0.55 15 19.49 5.02 12.26 34.13 5.33 19.73 
R6 0.05 0.35 16 7.83 0.94 4.39 12.44 1.63 7.04 
R7 0.25 0.1 13 9.86 1.14 5.50 15.65 1.79 8.72 
R8 0.45 0.4 7 10.53 2.39 6.46 14.54 2.65 8.60 
R9 0.2 0.5 3 8.79 1.44 5.12 11.66 1.84 6.75 
R10 0.08 0.7 5 8.53 1.68 5.11 11.39 2.1 6.75 
R11 0.06 0.2 8 7.77 0.94 4.36 11.73 1.63 6.68 
R12 0.1 0.3 10 8.67 0.94 4.81 12.41 1.6 7.01 
R13 0.3 0.85 9 18.9 11.55 15.23 29.02 13.31 21.17 
R14 0.4 0.75 12 14.07 9.41 11.74 23.49 11.17 17.33 
R15 0.35 0.25 18 9.92 1.48 5.70 15.34 1.95 8.65 

LR(η): the learning rate; MP: the momentum parameter; NHL: the number of hidden layer nodes; CV: leave-one-out cross validation; 
TR: training; AV: average; MAE: mean absolute error; RMSE: root-mean-square error. The optimum values are highlighted. 
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To validate the prediction models, we showed two examples. Firstly, we cloned the xylanase gene of 
Bacillus pumilus, sequenced it and expressed it in Escherichia coli. The accession number of the gene 
in NCBI is EF090270 and the protein ID is ABM54186.1 
(http://www.ncbi.nlm.nih.gov/nuccore/EF090270). The optimal temperature of the purified xylanase was 
50ºC, which was shown in Figure 3. We calculated the amino acid composition of the xylanase and 
used the model to predict the optimal temperature. For linear kernel SVM, the predicted optimal 
temperature was 49.89ºC, for RBF kernel SVM was 50.02ºC, and for BPNN was 49.94ºC, the MAEs 
were 0.11ºC, 0.02ºC and 0.06ºC, respectively. Secondly, we designed a new thermophilic xylanase, 
synthesized its coding gene de nove and expressed it in Escherichia coli. The optimal temperature of it 
was 60ºC and it can keep over 50% activity at 70ºC for one hour (Fu et al. 2012). The predicted results 
of linear kernel SVM, RBF kernel SVM and BPNN were 54.77ºC, 55.25ºC, and 56.05ºC, and the MAEs 
were 5.23ºC, 4.75ºC, and 3.95ºC, respectively. From the two experimental examples, we could 
conclude that the model we proposed might work as a useful tool for QSPR studies of xylanase and 
facilitate the engineering for new one.  

 

Fig. 2 The prediction errors of BPNN and SVM. BPNN: back-propagation neural network; LSVM: support vector 
machine with linear kernel; RSVM: support vector machine with RBF kernel; the prediction error is predicted 
temperature plus experimental temperature. It is the prediction results of the LOO cross validation. 

 

Fig. 3 The optimal temperature of xylanase. 

http://www.ncbi.nlm.nih.gov/nuccore/EF090270�
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DISCUSSION  

Some important parameters (C, Ɛ, and γ) had to be optimized during SVM training and testing in order 
to gain a good predictive performance of SVR model. There was some studies deal with the 
optimization of running parameters (Xue et al. 2004; Yao et al. 2004; Liu et al. 2005), but all of them 
fixed two of the parameters and check the curve of RMSE versus the left one to find its optimal value. 
Often the fixed values of the parameters were selected based on human expertise or even experience. 
For example, researchers know that too small value of C will lead to insufficient stress placed on fitting 
the training data and too big value of C will lead to overfit the training data. But how big is not too small 
or too big? Different researchers may chose different values of C that they think it is not too small or 
too big. So using uniform design to optimize the parameters would have at least two advantages 
compared with their methods. Firstly, it allowed much larger searching space of the combination of the 
parameters and thus the chances of finding the optimal combination of the parameters would increase. 
Secondly, uniform design was much easier than their methods; it needed only 16 runs for 3 factors and 
16 levels, while their methods need 48 runs. This was because of the inherent advantages of uniform 
design. 

Recently two linear models for both single residue and dipeptides and optimum temperature of 
xylanase in the G/11 family were established based on stepwise regression (Liu et al. 2006).The 
training RMSEs of their models were 5.03ºC and 1.91ºC, respectively, and they calculated the maximal 
and minimal optimum temperature of xylanase as 120.84ºC and 10.83ºC. From these results we can 
conclude that the model we established here was much more accurate. This indicated that the 
relationship between amino acid composition and the xylanase optimum temperature was very 
complicated and one might not gain the satisfactory results based on the simple linear models, while 
SVM is a more powerful tool for prediction of nonlinearities.  

Using the crystal information of xylanase, one can pinpoint the residues that may suitable for 
mutations. Consequently, saturation mutagenesis (where all 20 native amino acids are tested at each 
pinpointed position) can be applied to generate large, virtual libraries of mutants. Then, our model, for 
predicting the xylanase optimal temperatures, can be used for pre-screening the virtual libraries. The 
optimal sequences were chosen based on their predicted optimal temperatures; the mutants were then 
generated experimentally by mutagenesis and recombination. Therefore, the model can decrease the 
sequence space, while maintaining broad diversity, to a number easily amenable to experimental 
screening.  

As analyzed above, SVM only showed a minor improvement over BPNN in our study, the large 
variation (from 0.03ºC to 27.44ºC) in prediction indicated that it should be used with some cautions. At 
the same time, the MAE of LOO cross-validation was 6.88ºC, and the mean absolute percent error was 
12.8%, one can see that is not good enough for directing xylanase engineering. Perhaps further 
improvement may be achieved by collecting more data sets of higher quality. It should be possible to 
increase the number of data entries and eliminate the noisy data entries from the updated databases. 
We think when the MAE of LOO cross-validation was within 5ºC, it may be good enough for directing 
xylanase engineering and our results were close to this object. 
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