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Background: A biosurfactant produced by Pseudomonas aeruginosa cultivated in a low-cost medium formulated
with 2.5% vegetable oil refinery residue and 2.5% corn steep liquor and distilled water was employed to stabilize
silver nanoparticles in the liquid phase. The particles were initially synthesized using NaBH4 as reducing agent in
biosurfactant reverse micelles and were extracted from the micellar solution to disperse in heptane.
Results: A silver particle size in the range of 1.13 nmwas observed. The UV–vis absorption spectra proposed that
silver nanoparticles could be formed in the reversemicelles and relatively stabilized for at least 3 monthswithout
passivator addition. The Transmission Electron Microscope (TEM) shows that the silver nanoparticles are of
spherical form and relatively uniform.

Conclusions: This process provided a simpler route for nanoparticle synthesis compared to existing systems using
whole organisms or partially purified biological extracts, showing that the low-cost biosurfactant can be used for
nanoparticle synthesis as a non-toxic and biodegradable stabilizing agent.
© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The application of nanoscale materials and structures, usually
ranging from 1 to 100 nanometers (nm), is an emerging area of
nanoscience and nanotechnology. Nanomaterialsmay provide solutions
to technological and environmental challenges in the areas of solar
energy conversion, catalysis, medicine, and water treatment [1,2]. This
increasing demand must be accompanied by “green” synthesis
methods. In the global efforts to reduce generated hazardous waste,
“green” chemistry and chemical processes are progressively integrating
with modern developments in science and industry. Implementation of
these sustainable processes should adopt the 12 fundamental principles
of green chemistry [3,4,5,6]. These principles are geared to guide in
minimizing the use of unsafe products and maximizing the efficiency
of chemical processes. Hence, any synthetic route or chemical process
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should address these principles by using environmentally benign
solvents and nontoxic chemicals [7].

Silver nanocrystallites exhibit an enhancement of some
potential properties including catalysis [8], magnetic and optical
polarizability [9], electrical conductivity [10], and antimicrobial
activity in surface-enhanced Raman scattering (SERS) [11]. Currently,
many techniques have been devoted to synthesizing nanosized silver
particles, such as chemical reduction [12,13,14], photochemical
reduction, reverse micelle based and lamellar liquid crystal
approaches [15], aerosol techniques and an electrostatic spraying
technique [16]. Since the reverse micelle system has been used to
form metal nanoparticles, this method has been paid more and
more attention [17]. However, most surfactants we usedwere chemical
surfactants, which are toxic and will pollute the environment.
Biosurfactants, which derived from microbial origin, have bulky and
complicated structures, higher biodegradability, lower toxicity, and
excellent antiviral activities [18]. So biosurfactant as a “green” stabilizer
is one of the best candidates. It is believed that biosurfactants will
be increasingly attractive as multifunctional materials for the new
century [14].

In the present paper the possibility of synthesizing silver
nanoparticles in water-in-oil microemulsion stabilized by a low-cost
biosurfactant is studied. The silver nanoparticles obtained are
characterized by UV–vis absorption spectrum and a Transmission
Electron Microscope (TEM).
sevier B.V. All rights reserved.
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2. Materials and methods

2.1. Materials

n-Heptane and n-butanol were purchased from Sigma-Aldrich
Chemical Corporation, USA. Silver nitrate (AgNO3) was purchased from
Sigma-Aldrich Chemical Corporation, USA. Sodium borohydride
(NaBH4, 97%) was purchased from Sigma-Aldrich Chemical Corporation,
USA. All of the components are of reagent grade and used without
further purification. Milli-Q gradewater was used in all the experiments.
2.2. Bacterial strain and preparation of seed culture

A strain of Pseudomonas aeruginosaUCP0992was provided from the
culture collection of the Centre of Research in Environmental Sciences,
Universidade Católica de Pernambuco, Brazil, registered with the
World Federation of Culture Collections (WFCC). The cultures were
maintained in nutrient agar slants at 4°C. For pre-culture, the strain
from a 24 h culture on nutrient agarwas transferred into 50ml nutrient
broth to prepare the seed culture. The cultivation condition for the seed
culture was 28°C, 150 rpm, and 10–14 h of incubation time.
2.3. Biosurfactant production

For liquid fermentation, a 1% cell suspension of 0.7 OD (optical
density) at 600 nm, corresponding to an inoculum of 107 C.F.U./ml,
was inoculated into a 500 ml flask containing 100 ml medium
consisting of distilled water amended with 5% vegetable oil refinery
residue and 2.5% corn steep liquor. The pH of the medium was initially
adjusted to 7.0 by 1.0MHCl. The culture temperature and agitation rate
were 37°C and 150 rpm, respectively. At the end of fermentation
(120 h), samples were taken from the liquid culture to determine the
surface tension and surfactant concentration.
2.4. Biosurfactant isolation

The biosurfactantwas extracted from culturemedia after cell removal
by centrifugation at 5,000 × g for 30 min. The supernatant pH was
adjusted to 2.0 with 6.0 M HCl, and an equal volume of CHCl3/CH3OH
(2:1) was added. The mixture was vigorously shaken for 15 min and
allowed to set until phase separation. The organic phase was removed
and the operation was repeated twice again. The biosurfactant was
concentrated from the pooled organic phases using a rotary evaporator.
The viscous yellowish product obtained was dissolved in methanol and
concentrated again by evaporation of the solvent at 45°C [19].
2.5. Surface tension

Surface tension and interfacial tension (against hexadecane) changes
were carried out on the cell-free broth obtained by centrifuging the
cultures at 5,000 × g for 20 min by the ring method using a Sigma 70
Tensiometer (KSV Instruments Ltd. — Finland) at room temperature.
Tensiometers determine the surface tensionwith the help of an optimally
wettable ring suspended from a precision balance. In the ringmethod the
liquid is raised until contact with the surface is registered. The sample is
then lowered again so that the liquid film produced beneath the liquid
is stretched. As the film is stretched a maximum force is experienced,
the force is measured and used to calculate the surface tension. The
instrument was calibrated against Milli-Q-4 ultrapure distilled water
(Millipore, Illinois, USA). Prior to use the platinum plate and all the
glassware were sequentially washed with chromic acid, deionized
water, acetone and finally flamed with a Bunsen burner.
2.6. Preparation method

The nanoparticleswere synthesized using twomodified approaches,
according to Xie et al. [20] and Palanisamy and Raichur [21].

For the synthesis of silver nanoparticles in situ in the water-in-oil
microemulsion phase, a 0.05 mol/l aqueous AgNO3 solution and a
0.1 mol/l aqueous NaBH4 solution were separately used instead of
water to form reverse micelles with the biosurfactant. NaBH4 was
used here to act as reducing agent.

The first synthesis involved mixing 1.0 ml of 0.05 mol/l aqueous
AgNO3 solution, 0.1 g/l biosurfactant and 25 ml n-heptane together
and stirred vigorously at room temperature until homogeneous
reverse micelles formed and the same bulk of 0.1 mol/l aqueous
NaBH4 solution was used to replace aqueous AgNO3 to form the
other reverse micelles. The two samples were mixed under stirring
for 60 min. Then, the particles were precipitated from the solution
and isolated by centrifugation at 14,000 × g. Then, 0.5 ml ethanol
was added for each 1 ml reverse micelles. Ethanol was added to the
complete removal of the surfactant and n-heptane. The prepared
silver nanoparticles could be readily redispersed to obtain a suspension
in 10 ml n-butanol aided by sonication.

The second microemulsion was prepared by dissolving 0.1 g/l of
the biosurfactant in 6.25 ml of n-heptane and 1 ml AgNO3. Solution
was added to the mixture with continuous stirring for 10 min at room
temperature. Then, 1 ml NaBH4 was added to the mixture which was
agitated for 30 min. After agitation, 10 ml ethanol was added to break
the reverse micelles, thus forming two phases. The precipitate was
separated by centrifugation at a speed of 14,000 × g for 30 min and
10 ml of n-butanol was added to obtain a suspension.

2.7. Characterization

The resulting samples were used for absorption spectroscopy
characterization on a Shimadzu UV-2450 spectrophotometer from 300
to 800 nm. A FEI Tecnai™ (USA) TEM operated at 200 kV was used for
studying the shape and size of the nanoparticles. The sample for TEM
study was prepared by dispersing the powder particles in acetone
solution followed by sonication for 5 min. A droplet of the solution
mixture was taken on a carbon coated copper grid.

3. Results and discussion

The green synthesis of silver nanoparticles involves three main steps,
whichmust be evaluatedbasedongreen chemistryperspectives, including
(1) selection of solvent medium, (2) selection of environmentally benign
reducing agent, and (3) selection of nontoxic substances for the silver
nanoparticle stability [22].

Considering the need of greener bioprocess and novel enhancers
for the synthesis using microbial processes, biosurfactants and/or
biosurfactant producing microbes are emerging as an alternate source
of rapid synthesis of nanoparticles [19,23]. Micro-emulsion techniques
using oil–water–surfactant mixture were shown to be a promising
approach for nanoparticle synthesis, as described by Xie et al. [20].

Based on this approach, we have produced and tested a low-cost
biosurfactant as a stabilizing agent of silver nanoparticles synthesized
in microemulsion.

The biosurfactant from P. aeruginosa cultivated in a low-cost
medium formulated only with two agro-industrial substrates was
produced during 120 h at 37°C. The medium surface tension was
reduced to 29.0 mN/m at the end of fermentation and the isolated
biosurfactant corresponded to a concentration of 7.4 g/l.

3.1. Absorption spectra characterization

The result showed that a silver particle size in the range of 1.13 nm
was obtained by the use of the biosurfactant from P. aeruginosa.



Fig. 2. Transmission Electron Micrograph of silver nanoparticles in heptane (scale =
200 nm).
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The UV–vis absorption band of nanoparticles at 400 nm is a typical
characteristic of silver nanoparticles (Fig. 1). Metal nanoparticles have
a surface plasmon resonance absorption in the UV–vis region. This
result evidenced that the nano-scale silver can be synthesized in reverse
micelles using glycolipid as stabilizer [24,25,26,27]. The particles are
extracted from micelles by adding ethanol to the microemulsion. This
result indicates that the nano-scale silver can be synthesized in reverse
micelles using the low-cost biosurfactant as stabilizer. Decrease in the
intensity is due to a change in the free electron density.

To monitor the stability of the final prepared silver particles, we
measured the absorption spectra of the solution on different days.
During the entire chemistry process, no passivator was added into
the system. It proves that the silver nanoparticle solution prepared
in such proportional reverse micelles can remain relatively stable
for at least 3 months. The remnant biosurfactant in the solution is
regarded as the stabilizer, which forms a steric hindrance around the
particles to prevent them from aggregating greatly by electrostatic
interactions.

The particle size found in this work is similar to the one obtained
by Xie et al. [20], who found sizes in the range of 2–8 nm for the silver
nanoparticles stabilized by the biosurfactant-rhamnolipid purchased
from Jeneil Biosurfactant Co., LLC (USA) in heptane. On the other
hand, Palanisamy and Raichur [21] showed nickel oxide particles of
about 47 nm when the same commercial Jeneil Biosurfactant was
employed under optimized pH conditions. Research involving
synthetic surfactants demonstrated the synthesis of silver nanoparticles
on the order of 59–70, 43–53 and 57–76 nm with the cationic
cetyltrimethylammonium chloride (CTAC), the anionic sodium dodecyl
sulfate (SDS) and the non-ionic Tween 80, respectively, according to
the variation of concentration of solutions of these surfactants [28].
Kiran et al. [29] used a glycolipid biosurfactant produced from
sponge-associated marine Brevibacterium casei MSA19 using the
agro-industrial and industrial waste as substrate to synthesize silver
nanoparticles. The silver nanoparticles synthesized in this study by
the glycolipid were uniform and stable for 2 months.

3.2. TEM analysis

TEM analysis was carried out on the silver particles to observe the
individual size and shape of the nanoparticles. TEM micrograph of
sample synthesized is shown in Fig. 2, which is consistent with the
absorption spectra results. A large number of smaller particles are
distributed on thefilms, the size range ofwhich is 1–2nm. This indicates
Fig. 1.UV–vis absorption spectra of silver nanoparticles after synthesis in reverse micelles
at room temperature.
that the distribution of silver nanoparticles stabilized by the
biosurfactant is rather uniform.

The structure of the biosurfactant plays an important role in
determining the morphology of the synthesized nanoparticles.
These micelles are spherical in shape and favored the formation of
spherical nanoparticles during synthesis.

As biosurfactants are natural surfactants derived from microbial
origin composed mostly of sugar and fatty acid moieties, they have
higher biodegradability, lower toxicity, and excellent biological
activities. Since the biosurfactants reduce the formation of
aggregates due to electrostatic force of attraction they facilitate
uniform morphology and stability of nanoparticles.

Some larger particles on the films are also observed. Two possibilities
are of concern. One is that the nanometer-sized water layers limit the
packing of the particles in the direction perpendicular to the water layers
when the particles are growing in reverse micelles, the absorption of
surfactant molecules cannot totally prevent particles from aggregating
and the thickness of the water layers cannot absolutely restrict the
particle size due to the flexibility of the surfactant bilayers [29]. The
other is that during the extraction and redispersion process many
particles impact each other promoting aggregation between them.

To determine the stability of silver nanoparticles synthesized
through the biosurfactant, the prepared silver particles were kept
at room temperature for different day intervals. The results
evidenced that nanoparticles were stable for 3 months. Control
experiments without biosurfactant were included in the experimental
set-up and it was observed that instead of nanoparticles, aggregated
clumps were observed after 7 d. The biosurfactant would have acted as
stabilization agent and prevented the formation of aggregates and
favored the production and stability of the nanoparticles under the
experimental conditions.

The results described here for the synthesis of silver nanoparticles
from a laboratory biosurfactant produced from agro-industrial waste
are promising, since the majority of reports describing the use of
biosurfactants in the synthesis of nanoparticles already published in
the literature make use only of commercial rhamnolipids, i.e. with a
high degree of purification.

4. Concluding remarks

The present work demonstrates a simple eco-friendly method
for synthesizing spherical silver nanoparticles by microemulsion
technique. Silver nanoparticles were successfully synthesized using
the biosurfactant from P. aeruginosa. The synthesized nanoparticles
were found to be spherical in shape with uniform distribution. The
experimental observation was supported by TEM analysis. The silver
nanoparticles can be stabilized correspondingly for at least 3 months
without passivator addition. The use of low-cost, renewable and
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biodegradable biosurfactants in replacement to toxic synthetic
surfactants is a promising alternative for the synthesis of inorganic
nanoparticles for industrial application.

Financial support

This study was funded by the Foundation for the Support of
Science and Technology of the State of Pernambuco (FACEPE), the
Research, the National Council for Scientific and Technological
Development (CNPq), the Coordination for the Improvement of
Higher Level Education Personnel (CAPES) and Development
Program from National Agency of Electrical Energy (ANEEL).

Acknowledgments

The authors are grateful to the laboratories of the Centre for Sciences
and Technology of the Universidade Católica de Pernambuco, Brazil.

Author contribution

Proposed the theoretical frame: LAS, JEGS; Conceived and designed
experiments: LAS, JEGS; Contributed reagents/materials/analysis tools:
RDR, JML; Wrote the paper: LAS; Performed the experiments: CBBF,
AFS, RDR, JML; Analyzed the data: LAS, JEGS.

Conflict of interest

There is no conflict of interest.

References

[1] Dahl JA, Maddux BLS, Hutchison JE. Toward greener nanosynthesis. Chem Rev
2007;107:2228–69. http://dx.doi.org/10.1021/cr050943k.

[2] Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their
antimicrobial activities. Adv Colloid Interface Sci 2009;145:83–96.
http://dx.doi.org/10.1016/j.cis.2008.09.002.

[3] Poliakoff M, Anastas P. A principled stance. Nature 2001;413:257.
http://dx.doi.org/10.1038/35095133.

[4] Desimone JM. Practical approaches to green solvents. Science 2002;297:799–803.
http://dx.doi.org/10.1126/science.1069622.

[5] Gross RA, Kalra B. Biodegradable polymers for the environment. Science
2002;297:803–7. http://dx.doi.org/10.1126/science.297.5582.803.

[6] Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of
metal nanoparticles. J Am Chem Soc 2003;125:13940–1.
http://dx.doi.org/10.1021/ja029267j.

[7] Anstas PT, Warner JC. Green chemistry: Theory and practice. New York: Oxford
University Press Inc.; 1998 30.

[8] Shiraishi Y, Toshima N. Oxidation of ethylene catalyzed by colloidal dispersions
of poly(sodium acrylate)-protected silver nanoclusters. Colloids Surf A
2000;169:59–66. http://dx.doi.org/10.1016/S0927-7757(00)00417-9.

[9] BloemerMJ, Haus JW, Ashley PRJ. Degenerate four-wavemixing in colloidal gold as a
function of particle size. J Opt Soc Am B 1990;7:790–5.
http://dx.doi.org/10.1364/JOSAB.7.000790.
[10] Chang LT, Yen CCJ. Studies on the preparation and properties of conductive
polymers. VIII. Use of heat treatment to prepare metallized films from silver
chelate of PVA and PAN. Appl Polym Sci 1995;55:371–4.
http://dx.doi.org/10.1002/app.1995.070550219.

[11] Matejka P, Vlckova B, Vohidal J, Pancoska P, Baumrunk VJ. The role of triton X-100
as an adsorbate and a molecular spacer on the surface of silver colloid: A
surface-enhanced Raman scattering study. J Phys Chem 1992;96:1361–6.
http://dx.doi.org/10.1021/j100182a063.

[12] Murray BC, Noris DJ, Bawendi MG. Synthesis and characterization of nearly
monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites.
J Am Chem Soc 1993;115:8706–15. http://dx.doi.org/10.1021/ja00072a025.

[13] Taleb A, Petit C, Pileni MP. Synthesis of highly monodisperse silver nanoparticles
from AOT reverse micelles: A way to 2D and 3D self-organization. Chem Mater
1997;9:950–9. http://dx.doi.org/10.1021/cm960513y.

[14] Li XL, Zhang JH, Xu WQ, Jia HY, Wang X, Yang B, et al. Mercaptoacetic acid-capped
silver nanoparticles colloid: Formation, morphology, and SERS activity. Langmuir
2003;19:4285–90. http://dx.doi.org/10.1021/la0341815.

[15] Limin Q, Yueying G, Jiming M. Synthesis of ribbons of silver nanoparticles in lamellar
liquid crystals. Colloids Surf A 1999;157:285–94.
http://dx.doi.org/10.1016/S0927-7757(99)00053-9.

[16] Jiang LP, Wang AN, Zhao Y, Zhang JR, Zhu JJ. A novel route for the preparation of
monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg
Chem Commun 2004;7:506–9. http://dx.doi.org/10.1016/j.inoche.2004.02.003.

[17] Lin J, Zhou W, O'Connor CJ. Formation of ordered arrays of gold nanoparticles from
CTAB reverse micelles. Mater Lett 2001;49:282–6.
http://dx.doi.org/10.1016/S0167-577X(00)00385-2.

[18] Banat IM, Franzetti A, Gandolfi I, Bestetti G,Martinotti MG, Fracchia L, et al. Microbial
biosurfactants production, applications and future potential. Appl Microbiol
Biotechnol 2010;87:427–44. http://dx.doi.org/10.1007/s00253-010-2589-0.

[19] Kasture MB, Patel P, Prabhune AA, Ramana CV, Kulkarni AA, Prasad BLV. Synthesis of
silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid
structure on the size of particles. J Chem Sci 2008;120:515–20.
http://dx.doi.org/10.1007/s12039-008-0080-6.

[20] Xie Y, Ye R, Liu H. Synthesis of silver nanoparticles in reverse micelles stabilized by
natural biosurfactant. Colloids Surf A 2006;279:175–8.
http://dx.doi.org/10.1016/j.colsurfa.2005.12.056.

[21] Palanisamy P, Raichur AM. Synthesis of spherical NiO nanoparticles through a novel
biosurfactant mediated emulsion technique. Mater Sci Eng C 2009;29:199–204.

[22] Barnickel P, Wokaun A, Sager W, Eicke HF. Size tailoring of silver colloids by
reduction in WO microemulsions. J Colloid Interface Sci 1992;148:80–90.
http://dx.doi.org/10.1016/0021-9797(92)90116-4.

[23] Reddy AS, Chen CY, Baker SC, Chen CC, Jean JS, Fan CW, et al. Synthesis of silver
nanoparticles using surfactin: A biosurfactant as stabilizing agent. Mater Lett
2009;63:1227–30. http://dx.doi.org/10.1016/j.matlet.2009.02.028.

[24] Petit C, Lixon P, Pileni MP. Structural change in AOT reverse micelles induced by
changing the counterions. Prog Colloid Polym Sci 1992;89:328–31.
http://dx.doi.org/10.1007/BFb0116340.

[25] Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, et al. Photochemical formation of
silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 1996;12:909–12.
http://dx.doi.org/10.1021/la950435d.

[26] Ji M, Chen XY, Wai CM, Fulton JL. Synthesizing and dispersing silver nanoparticles in
a water-in-supercritical carbon dioxide microemulsion. J Am Chem Soc
1999;121:2631–2. http://dx.doi.org/10.1021/ja9840403.

[27] Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid
biosurfactants — From energy-saving materials to gene delivery carriers. J Biosci
Bioeng 2002;94:187–201. http://dx.doi.org/10.1263/jbb.94.187.

[28] Soukupová J, Kvítek L, Panácek A, Nevecná T, Zboril R. Comprehensive study on
surfactant role on silver nanoparticles (NPs) prepared via modified Tollens
process. Mater Chem Phys 2008;111:7–81.
http://dx.doi.org/10.1016/j.matchemphys.2008.03.018.

[29] Kiran GS, Sabu A, Selvin J. Synthesis of silver nanoparticles by glycolipid
biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol
2010;148:221–5. http://dx.doi.org/10.1016/j.jbiotec.2010.06.012.

http://dx.doi.org/10.1021/cr050943k
http://dx.doi.org/10.1126/science.1069622
http://dx.doi.org/10.1126/science.297.5582.803
http://dx.doi.org/10.1016/S0927-7757(00)00417-9
http://dx.doi.org/10.1021/j100182a063
http://dx.doi.org/10.1021/ja00072a025
http://dx.doi.org/10.1021/cm960513y
http://dx.doi.org/10.1021/la0341815
http://dx.doi.org/10.1016/j.inoche.2004.02.003
http://dx.doi.org/10.1007/s00253-010-2589-0
http://refhub.elsevier.com/S0717-3458(14)00043-8/rf0105
http://refhub.elsevier.com/S0717-3458(14)00043-8/rf0105
http://dx.doi.org/10.1016/j.matlet.2009.02.028
http://dx.doi.org/10.1021/ja9840403
http://dx.doi.org/10.1263/jbb.94.187
http://dx.doi.org/10.1016/j.jbiotec.2010.06.012

	Synthesis of silver nanoparticles using a biosurfactant produced in low-�cost medium as stabilizing agent
	1. Introduction
	2. Materials and methods
	2.1. Materials
	2.2. Bacterial strain and preparation of seed culture
	2.3. Biosurfactant production
	2.4. Biosurfactant isolation
	2.5. Surface tension
	2.6. Preparation method
	2.7. Characterization

	3. Results and discussion
	3.1. Absorption spectra characterization
	3.2. TEM analysis

	4. Concluding remarks
	Financial support
	Acknowledgments
	References


