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ARTICLE INFO ABSTRACT

Article history: Background: The sea cucumber lysozyme belongs to the family of invertebrate lysozymes and is thought to be a
Received 13 February 2014 key defense factor in protecting aquaculture animals against bacterial infection. Recently, evidence was found
Accepted 25 August 2014 that the sea cucumber lysozyme exerts broad spectrum antimicrobial action in vitro against Gram-negative

Available online 18 September 2014 and Gram-positive bacteria, and it also has more potent antimicrobial activity independent of its enzymatic

activity. To explore the antimicrobial role of this non-enzymatic lysozyme and model its structure to novel

KW”‘“-’ I antimicrobial peptides, the peptide from the C-terminal amino acid residues 70-146 of the sea cucumber
Affinity purification . , . . . . Lo .
Lysozyme peptide lysozyme in Stichopus japonicus (SjLys-C) was heterologously expressed in Escherichia coli Rosetta(DE3)pLysS.

Results: The fusion protein system led to over-expression of the soluble and highly stable product, an
approximate 26 kDa recombinant SjLys-C protein (rSjLys-C). The present study showed that rSjLys-C displayed
strong antimicrobial activity against the tested Gram-positive and Gram-negative bacteria. In particular, the
heat-treated rSjLys-C exhibited more inhibitive activity than the native rSjLys-C. The structural analysis of
SjLys-C showed that it is a typical hydrophilic peptide and contains a helix-loop-helix motif. The modeling of
SjLys-C molecular structures at different temperatures revealed that the tertiary structure of SjLys-C at 100°C
underwent a conformational change which is favorable for enhancing antimicrobial activity.

Conclusion: These results indicate that the expressed rSjLys-C is a highly soluble product and has a strong
antimicrobial activity. Therefore, gaining a large quantity of biologically active rSjLys-C will be used for further
biochemical and structural studies and provide a potential use in aquaculture and medicine.
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1. Introduction

Among the antimicrobial peptides, lysozyme, having strong
bactericidal capability, is considered as the major component of the
innate immune system of many organisms and plays an important role
in protecting the host species from microbial invasion [1,2]. The enzyme
has muramidase (glycohydrolase) activity that catalyzes the cleavage of
the glycosidic bond between N-acetylmuramic acid and
N-acetylglucosamine of the peptidoglycan in the cell wall of
Gram-positive bacteria and eventually results in killing of bacteria by
lysis [1,3]. In addition, soluble fragments released by lysozyme
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degradation of peptidoglycan may play a role in immunomodulation in
both vertebrates and invertebrates [4,5,6]. Moreover, lysozyme can also
kill Gram-negative bacteria and inactivate viruses through a mechanism
independent of its muramidase activity [7,8,9,10,11,12]. Furthermore, it
has been proved that some bactericidal peptides derived from hen egg
white, T4 phage and human milk lysozymes have an exaggerated and
broad-spectrum microbicidal activity [13,14,15,16,17,18,19].

Based on the differences in structural, catalytic and immunological
characteristics, the currently known lysozymes have been classified
into six distinct types: chicken-type (c-type) lysozyme, goose-type
(g-type) lysozyme, invertebrate-type (i-type) lysozyme, phage
lysozyme, bacterial lysozyme and plant lysozyme [3,20,21,22,23]. The
i-type lysozyme was first identified in the starfish Asterias rubens [24].
Current knowledge has confirmed that the i-type lysozymes occur in
the phyla of molluscus (e.g. several bivalve species, Tapes japonica,
Mytilus edulis, Crassostrea gigas, Ostrea edulis, Crassostrea virginica)
[21,25,26,27,28], annelids (e.g. earthworm Eisenia foetida and Eisenia
andrei, medicinal leech Hirudo medicinalis) [25,29,30], echinoderms
(e.g. starfish A. rubens, sea cucumber Stichopus japonicus) [7,31],
nematodes (e.g. Caenorhabditis species, Caenorhabditis elegans,
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Caenorhabditis briggsae and Caenorhabditis remanei) [32], and
arthropods (e.g. mosquito Anopheles gambiae) [33]. In recent years, the
marine i-type lysozymes have gained an increased interest in view of
its enzymatic and non-enzymatic activities against both Gram-positive
and Gram-negative bacteria. The best example of characterizing the
lysozyme function as a peptidoglycan-breaking enzyme is for the
marine bivalve T. japonica. These studies used the purified protein to
evaluate the isopeptidase and lysozyme activities in vitro and
determined the crystal structure [34,35,36]. However, the antibacterial
activity of lysozymes is not completely dependent on the muramidase
and isopeptidase enzymatic activity, making the understanding of the
immune role of i-type lysozymes more challenging.

In an attempt to elucidate the functional significance of the sea
cucumber lysozyme as an effective antimicrobial peptide used in
aquaculture farming and food preservation, we had over-expressed
the mature peptide of the sea cucumber S. japonicus (SjLys) in
Escherichia coli. However, the over-expression of SjLys led to the
recombinant protein in insoluble form. This could prevent the
subsequent protein analysis and application due to restriction of the
purified protein amount and its activity through undergoing
denaturation and refolding of the insoluble protein. Therefore, we
here reported to undertake over-expression of the soluble fusion
peptide SjLys-C and evaluate the peptide antimicrobial activity against
a wide range of microorganisms.

2. Materials and methods
2.1. Materials

The sea cucumber S. japonicus was provided by Dalian Zhangzidao
Island Fishery Group, Dalian, China.

E. coli strain DH5¢c, the pMD18-T vector, RNAiso™ Plus for the extraction
of the total RNA, One Step RNA PCR Kit (AMV) used in RT-PCR and all
enzymes used for the genetic experiments were purchased from TaKaRa
Biotechnology (Dalian, China). The expression strain E. coli Rosetta(DE3)
pLysS and the vector pET-32a(4-) were obtained from Novagen (San Diego,
CA, USA). Oligonucleotide primers were synthesized and positive clones
were sequenced at Beijing Genomics Institute (Beijing, China). The affinity
column HisTrap HP was purchased from GE Healthcare (Piscataway, NJ,
USA). PVDF membranes were from Merck KGaA (Darmstadt, Germany). All
other reagents were of biochemical research grade.

The recombinant plasmid, pMD18-T-SjLys, containing the sea
cucumber lysozyme gene, was constructed and transformed in E. coli
DH5a in our lab as previously reported [7]. The strain of E. coli
Rosetta(DE3)pLysS was grown in LB medium (10 g tryptone, 10 g
NaCl, and 5 g yeast extract in 1 L of double distilled water). Plasmid
isolation and routine molecular biology techniques were performed
following standard procedures [37].

2.2. Isolation and synthesis of SjLys-C gene

The intestines of the sea cucumber S. japonicus were frozen with liquid
nitrogen and the contents were homogenized. The total RNA was isolated
following the instruction of RNAiso™ Plus (TaKaRa, China). A pair of
primers were designed to amplify the SjLys-C gene from nucleotide
bases 208-438 of the SjLys gene (GenBank accession no. EF036468)
using the template of the S. japonicus cDNA. The forward primer HS-C-1
(5’-GAATGCCATGGTGATGGGAGGTAGTCT-3’) and the reversed primer
HS-C-2 (5'-GTGGAATTCTGTTCAGTTGTTGCTCATGTC-3") introduced an
Nco 1 site and an EcoR 1 site (both indicated by an underline),
respectively. The SjLys-C gene was synthesized by reverse transcription
and PCR amplification in a single step reaction. Total volume reaction of
50 pL was done in triplicates and contained 5 pL of 10x One Step RNA
PCR Buffer, 10 pL of MgCl, (25 mM), 5 pL of dNTP Mixture (10 mM), 1 pL
of RNase Inhibitor (40 U/uL), 1 uL of AMV RNase XL (5 U/uL), 1 pL of
total RNA (1 pg/uL), 1 pL of AMV-Optimized Taq (5 U/UL), 1 L of HS-C-1

(20 uM), 1 pL of HS-C-2 (20 uM) and 24 pL of RNase free dH,0. The
thermocycle conditions were used as follows: reverse transcription at
50°C for 30 min, then initial denaturation at 94°C for 2 min followed by
35 cycles of amplification (94°C for 30 s, 58°C for 30 s, 72°C for 1 min),
and an overextension step of 72°C for 10 min. The amplification products
were analyzed by electrophoresis on 1.5% agarose gel. The expected PCR
product was then cloned into pMD18-T vector to give pMD18-T-SjLys-C
and the sequence of the DNA insert was confirmed by DNA sequencing.

2.3. Recombinant plasmid construction

The expression vector pET-32a(+) and the recombinant plasmid
pMD18-T-SjLys were digested with Nco I and EcoR 1, and ligated at 16°C
overnight. The ligation products were used to transform E. coli DH5cx by the
heat shock method. Positive clones selected on the LB agar plate containing
100 pg/mL ampicillin (Amp) and 34 pg/mL chloramphenicol (Cam) were
screened by PCR. Plasmid DNA from positive clones was purified and
subjected to DNA sequencing to confirm the presence of in-frame insertion.
The construct pET-32a(+)-SjLys-C was used to transform the expression
strain E. coli Rosetta(DE3)pLysS for recombinant protein synthesis.

24. Over-expression and purification of rSjLys-C

A positive clone strain, pET-32a(+)-SjLys-C/Rosetta(DE3)pLysS,
was used for the rSjLys-C expression. In the meantime, the strain
pET-32a(+ )/Rosetta(DE3)pLysS without the target DNA was used as a
control sample of expression. Both strains were grown in LB broth
containing 100 pg/mL Amp, 34 pg/mL Cam and 10 mg/mL glucose.
After 14-16 h of overnight growth with a constant orbital shaking of
180 rpm at 37°C, each culture of 1% was inoculated into LB/Amp/Cam
medium supplemented with 5 mg/mL glucose. The culture was done
in an orbital shaker at 160 rpm and 37°C until the optical density of
0.6-0.7 at 600 nm was reached. At this point, induction was done with
the addition of 0.5 mM IPTG (isopropyl-B-b-thiogalactoside). The
culture was continuously incubated for 10 h at 120 rpm and 28°C.

After the cultivation, the cells were harvested by centrifuging at 10,000
x g and 4°C for 15 min and re-suspended in pre-cold PBS (pH 7.4) with the
addition of 1% Triton X-100. The re-suspension of cells was sonicated at 400
W for 5 min (sonicating 2 s and pausing 1 s) in an ice bath. The sonicated
preparation was centrifuged at 15,000 x g for 15 min. The collected
supernatant was filtered with a 0.22 um filter membrane to be prepared
for purification using immobilized metal affinity chromatography.

The purification procedure was carried out using 1 mL HisTrap Hp
column, a Ni? *-NTA affinity chromatography column. The HisTrap Hp
column was washed by 10 volumes of double distilled water and
equilibrated with 10 volumes of the binding buffer (20 mM NasPO,,
500 mM Nacl, 40 mM imidazole, pH 7.4). The sample of above filtered
supernatant containing the recombinant protein was passed through
the column at a flow rate 1.0 mL/min. The column was washed with
the binding buffer to remove contaminating proteins, and then the
1SjLys-C was eluted by the elution buffer (20 mM Na3PO,4, 500 mM
NaCl, 150 mM imidazole, pH 7.4). The eluted fractions were collected
and finally dialyzed by 7 kDa cut-off dialysis bag against PBS (pH 7.4)
to wipe off imidazole. The product in dialysis bag was lyophilized for
use as the purified rSjLys-C, and stored at -20°C.

2.5. Western blot analysis

Total proteins of pET-32a(+)-SjLys-C/E. coli Rosetta(DE3)pLysS
produced before and after IPTG induction were analyzed by 12.5%
SDS-PGAE. For Western blot analysis, all proteins were transferred to a
PVDF membrane. The membrane was blocked with TBST buffer
(20 mM Tris-HCl, 150 mM Nadl, 0.05% Tween-20) containing 1.5%
BSA and 5% skim milk, and incubated overnight at 4°C. The membrane
was washed twice with TBST buffer and incubated with the diluted
Penta-His antibody (1:1000) for 1 h. The membrane was washed
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twice with TBST buffer and incubated with the same buffer for 15 min
before incubating with the diluted HRP-labeled rabbit anti-mouse IgG
antibody (1:10,000) for 1 h. The PVDF membrane was washed twice with
TBST buffer. Finally, the detection of the bound antibodies was performed

by incubating the membrane with TrueBlue Peroxidase substrate for 1 min.

2.6. Antimicrobial activity assay

The antimicrobial activity of the rSjLys-C was assayed by Oxford cup
method. Eight bacterial strains were used as the test microorganisms,
including Gram-positive Micrococcus lysodeikticus, Staphylococcus aureus
and Bacillus cereus, and Gram-negative Vibrio parahaemolyticus, Vibrio
splendidus, Pseudomonas aeruginosa, Pseudoalteromonas nigrifaciens and
Aeromonas hydrophila. The test strains were grown overnight at 30°C in
LB medium, respectively. The lyophilized powder of the rSjLys-C was
redissolved in PBS (pH 7.4) and adjusted the protein concentration to
0.5 mg/mL. The diameter of inhibition zone was measured by
the cup-plate method. Each test bacterial cells were adjusted to
3.0 x 10° CFU/mL in growth medium. 50 pL of cell culture was
homogeneously spread onto the LB agar plate. Three oxford cups were
placed on a LB agar plate. 200 pL of the rSjLys-C and heat-treated (at
100°C for 40 min) rSjLys-C was gently loaded into individual cups.
Meanwhile, the purified product of the strain pET-32a(+)/E. coli
Rosetta(DE3)pLysS without the target SjLys-C gene was used as a
negative control. The agar plates were incubated overnight at 30°C,
and the antimicrobial activities were evaluated by measuring the
diameter of inhibition zone. The results were mean values with
standard deviation. The data were analyzed by analysis of variance
(ANOVA), and a statistically significant difference was identified at the
95% confidence level. The comparison of the diameter inhibitive zones
between native rSjLys-C and heat-treated rSjLys-C for the same test
bacteria was made on the basis of the P-values (o = 0.05).

2.7. Hydrophobicity and hydrophilicity analyses

Gene sequence of SjLys-C was translated into amino acid (aa)
sequence by DNAstar7.1 Lasergen Editseq. Hydrophobicity and
hydrophilicity of SjLys-C were analyzed by the online tool (http://web.
expasy.org/protscale/). The Hphob./Kyte & Doolittle scale is applied for
delineating hydrophobic and hydrophilic character of the protein [38].

2.8. Molecular modeling analysis

The three dimensional model of SjLys-C (SjLys-C.pdb) from
Protein Data Bank (PDB) was generated by SWISS-MODEL server (http://
swissmodel.expasy.org/). The molecular modeling software GROMACS4.6
was used to perform the average tertiary structure of SjLys-C at different
temperatures. The file conversion between the PDB file (SjLys-C.pdb) and
the GROMACS files (processed.gro, topol.top, posre.itp) was performed
via the standard GROMACS pdb2gmx method [39]. The temperature was
adjusted by Berensen's coupling algorithm. And the atomic distance of
a-carbon atoms between the two active sites of SjLys-C was measured.

3. Results
3.1. Construction of recombinant expression plasmid pET-32a( +)-SjLys-C

In our previous study, the sequence of the sea cucumber lysozyme
SjLys showed that it consists of a putative N-terminal signal sequence
(aa 1-21) and a mature peptide (aa 22-146). The mature peptide of
SjLys contained two domains which code the different function.
The N-terminal domain of SjLys (aa 22-69) showed the catalytic
(glycosidase) activity, whereas the C-terminal domain (aa 70-146)
was probably involved in a non-enzymatic antibacterial activity [7].

In the present study, the DNA fragment coding C-terminal domain of
SjLys-C was amplified with primers HS-C-1 (containing Nco I site) and

HS-C-2 (containing EcoR I site), and inserted into the E. coli expression
vector pET-32a(+) as shown in Fig. 1. The recombinant expression
plasmid pET-32a(+)-SjLys-C included a 6x His-tag as a purification
utility and a Trx-tag as a solubility-enhancing partner at the N-terminus.

3.2. Over-expression of soluble rSjLys-C in E. coli

The recombinant plasmid pET-32a(+)-SjLys-C was transformed into
E. coli Rosetta(DE3)pLysS. Upon induction with IPTG, the rSjLys-C protein
was over-expressed (Fig. 2, lane 2). The molecular weight of the rSjLys-C
was shown to be approximately 26 kDa as expected, containing 8.72 kDa
of SjLys-C and 17.42 kDa of three fusion tags (His-tag, Trx-tag and S-tag)
from pET-32a(+). After sonicating the culture cells, it was found that the
1SjLys-C was mostly in the supernatant as a soluble form rather than in
sonicated precipitate (Fig. 2, lane 4). The rSjLys-C was purified by
one-step Ni?™" affinity chromatography as a single band shown on
SDS-PAGE (Fig. 2, lane 5). Analysis by BandScan 5.0 showed that the
1SjLys-C comprised ~85% of total cellular proteins, which indicated that
the rSjLys-C was over-expressed in E. coli. Further analysis showed that
the 1SjLys-C accounted for ~70% of total cellular proteins in
supernatant after sonication, which demonstrated that the rSjLys-C
produced a soluble product as the major expression profile.

The expressed protein was further confirmed by Western blot
analysis (Fig. 3). The results showed that the rSjLys-C had a specific
immune response with Penta-His monoclonal antibody at the position
of about 26 kDa, whereas no cross-reaction occurred in the proteins
from pET-32a(+)-SjLys-C/E. coli Rosetta(DE3)pLysS before induction.
This demonstrated that the rSjLys-C expressed correctly in prokaryote
E. coli, suggesting that it is the target peptide.

Analysis of hydrophobicity and hydrophilicity of SjLys-C containing
77 aa residues was done to speculate the reason of its soluble
expression. According to the Kyte-Doolittle calculation [38], it was
found that the hydrophilic residues of SjLys-C accounted for 87% of all
amino acid residues. Furthermore, two active residues Ser18 and
His48 in SjLys-C [7] were found to locate in two higher hydrophilicity
zones (aa 16-22 and 46-50) (Fig. 4). These results indicated that the
SjLys-C is a highly hydrophilic peptide and more likely gains a water
soluble product.

3.3. Antimicrobial activity of rSjLys-C

The antimicrobial activity of the native rSjLys-C and heat-treated
(100°C for 40 min) rSjLys-C was assayed using three Gram-positive
bacteria and five Gram-negative bacteria as the test microorganisms. A
negative control was used by the purified product of the induced
culture pET-32a(+) in E. coli Rosetta(DE3)pLysS. From the results of
antimicrobial zone assays (Table 1), it was found that both native
rSjLys-C and heat-treated rSjLys-C could inhibit the growth of all the
test bacteria. Further analysis showed that the native rSjLys-C
displayed a remarkable inhibitory effect on the growth of
M. lysodeikticus, V. parahaemolyticus and V. splendidus, and to a lesser
extent on the growth of S. aureus, B. cereus, P. aeruginosa, P. nigrifaciens
and A. hydrophila. Meanwhile, another significant result was found
that the rSjLys-C after heat treatment could more effectively inhibit
the growth of the most test bacterial strains. In particular, the
antimicrobial activity of the heat-treated rSjLys-C was increased by
21.1% against M. lysodeikticus, 19.0% against V. parahaemolyticus and
11.4% against V. splendidus as compared to the antimicrobial spectrum
of the native rSjLys-C. In addition, the experiment confirmed that the
negative control did not entail any growth inhibition against any
tested bacteria (data not shown).

3.4. Molecular modeling of SjLys-C with temperature variation

To explore the molecular mechanism of the more potent
antimicrobial activity of SjLys-C with an increase of temperature, the
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Fig. 1. Schematic diagram of construction of the expression plasmid pET-32a (+)-SjLys-C. The SjLys protein consists of a signal sequence, N-terminal region and C-terminal region as
shown in the box and their nucleotide bases were numbered. The inserted DNA fragment for construction of the recombinant expression plasmid was shown in a black box.

average modeling of SjLys-C molecular structures at 30°C and 100°C
were performed by the software GROMACS 4.6. The tertiary structure
of SjLys-C at the condition of 30°C was generated according to the
GROMACS algorithm (Fig. 5a) when the initial PDB structure of
SjLys-C was performed by energy minimization as an input file. The
required time from the initial PDB structure to the energy-minimized
altered structure in GROMACS files was about several seconds [40]. In
this study, the GROMACS structure of SjLys-C at 100°C was the
average structure of 10 ns molecular dynamics simulation time
(Fig. 5b). The results also showed that the distance between the active
residues of Ser18 and His48 shortened from 17.5 A to 11.8 A when the
temperature increased from 30°C to 100°C. It revealed that the SjLys-C
provided more compact folding structure under the severe condition
of 100°C, leading to its more stability.

4. Discussion

For invertebrate marine animals that constantly contact
microorganisms in the environment, lysozymes and the antibacterial
peptides are particularly important in the first line of defense against
the invasion of bacterial pathogens [7,11]. In recent years, the family
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Fig. 2. Analysis of the rSjLys-C expression by SDS-PAGE. Lane M: Protein molecular weight
marker; lane 1: Non-induction control; lane 2: Total cellular proteins induced by IPTG for
10 h; lane 3: Total cellular proteins in precipitate after sonication; lane 4: Total cellular
proteins in supernatant after sonication; lane 5: Purified rSjLys-C by HisTrap Hp column.
An arrow indicates the target rSjLys-C.

of i-type lysozymes was well-studied in view of its enzymatic
muramidase and non-enzymatic activities against both Gram-positive
and Gram-negative bacteria. The study of i-type lysozyme will
increase our understanding of the regulatory process of the defense
mechanisms. However, difficulties have been encountered in the
expression of antimicrobial i-type lysozyme because of producing
insoluble inclusion bodies in E. coli host [36,41,42] and low-production
yield in yeast host [43]. Therefore, using a functional peptide derived
from the partial region of i-type lysozyme would provide an effective
way to produce a large quantity of active protein with a cost-effective
and scalable method.

In the present study, the constructed recombinant plasmid
pET-32a(+)-SjLys-C was over-expressed in E. coli Rosetta(DE3)pLysS
and the soluble rSjLys-C was achieved in a large amount. Four aspects
were considered to gain the achievement. Firstly, E. coli Rosetta(DE3)
pLysS was chosen as transforming host strain for the rSjLys-C
expression. This is because Rosetta(DE3)™ host strain was designed to
enhance the expression of proteins that contain codons rarely used in
E. coli, such as AGA, AUA, CUA, and GGA [44], which all of these rare
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Fig. 3. Analysis of the rSjLys-C expression by Western blotting. Lane M: Precision plus
protein marker; lane 1: Non-induction control; lane 2: Total cellular proteins induced by
IPTG for 10 h; lane 3: Same sample as lane 1 detected by Western blotting; lane 4: Same
sample as lane 2 detected by Western blotting. An arrow indicates the target rSjLys-C.
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indicated hydrophilicity). The zones of aa 16-22 and 46-50 were shown in boxes.

codons are present in the SjLys-C gene. Secondly, to avoid the toxicity of
the rSjLys-C to the host strain and obtain the soluble expressing
recombinant protein, an expression vector pET-32a(+) was used in
this study. Prokaryotic expression vector pET-32a(+) has a affinity
His-tag with 6 histidines and a solubility-enhancing Trx-tag which
translates into thioredoxin [45]. The recombinant protein can be
purified by Ni?™ affinity chromatography, and this one-step
purification method makes it a simple and high efficient way to collect
pure recombinant product. Thirdly, the modified medium composition
for cultivation of the genetic engineering strain to express the rSjLys-C
was done with the addition of 1.0% glucose in LB liquid medium. The
aim of adding glucose is to maintain the stability of the recombinant
plasmid and improve the expressed protein solubility and folding
efficiency [46]. Lastly, it was confirmed that the SjLys-C is a highly
hydrophilic peptide based on hydrophobicity and hydrophilicity
analysis. Therefore, it is expected that solubility of the target protein
will be improved with the increase of hydrophilicity of amino acid
residues.

In the study, three Gram-positive bacteria were used for the test
microorganisms because M. lysodeikticus is a substrate for lysozyme
reaction [47], and S. aureus and B. cereus are the food poisoning
pathogens [48,49]. Five Gram-negative bacteria, V. parahaemolyticus,
V. splendidus, P. aeruginosa, P. nigrifaciens and A. hydrophila, were
used because all of these are the common pathogenic bacteria in
aquaculture, especially V. splendidus and P. nigrifaciens which are

Table 1
Antimicrobial activity of the rSjLys-C.

The test bacteria The diameter inhibitive zone (mm) p-value
rSjLys-C Heat-treated rSjLys-C A (%)
S. aureus 100 £ 04 105 £ 0.2 5.0 0.11882
M. lysodeikticus 19.0 £ 0.5 23.04+ 06 21.1 0.00097**
B. cereus 115+ 02 122 +£0.2 6.1 0.01417*
V. parahaemolyticus ~ 21.0 & 0.5  25.0 + 0.4 19.0 0.00029**
V. splendidus 201 £02 224402 114 0.00018**
P. aeruginosa 8.0+ 05 83 +04 3.8 0.49712
P. nigrifaciens 9.2 £ 0.1 95+ 0.2 33 0.06017
A. hydrophila 9.1+ 0.1 9.8 + 0.2 7.7 0.00702**

Each value is the mean of three replicates 4 standard deviation. The asterisks indicate

statistically significant differences (*, P < 0.05; **, P < 0.01) from the normal samples.

Diameter inhibitive zone

heat-treated rsilys-C

-Diameter inhibitive zone

1Sjlys-C

Diameter inhibitive zone

Sjlys-C

causative pathogens for skin ulcerative syndrome in sea cucumber
[50,51]. One of the current results showed that the rSjLys-C had
effectively inhibitory action against the food poisoning pathogens
S. aureus and B. cereus. This may indicate that the lysozyme C-terminal
peptide of the sea cucumber could be used as a candidate of food
preservatives because it is specific for bacterial cell walls and harmless
to humans. On the other hand, the rSjLys-C also had remarkable
antimicrobial activities against all the test pathogenic Gram-negative
bacteria, especially when it showed the characteristic of more tolerant
to high temperature. Taken together, these results indicate that the
recombinant SjLys-C possessed a wide range of antimicrobial activity
spectra against both Gram-positive and Gram-negative bacteria. And
this is the first report that the lysozyme C-terminal peptide of the sea
cucumber has the potent inhibitory effects against the devastating
pathogens in sea cucumber aquaculture farming.

Structural analysis of SjLys showed that the C-terminal region of
SjLys did not contain the domain coding for muramidase (glycosidase)
activity [7]. Therefore, the results of the antimicrobial activity of the
rSjLys-C in this study indicated that SjLys-C may be a peptide with
non-enzymatic antimicrobial action. Ibrahim et al. [10] demonstrated
that the denatured non-enzymatic lysozyme in chicken exerted
antimicrobial action against Gram-positive and Gram-negative
bacteria because of its helix-loop-helix (HLH) structure. Zavalova et al.
[52] studied on antimicrobial activity of destabilase-lysozyme
non-enzymatic area. The results showed that the destabilase-lysozyme
was different from the c-type lysozyme, because the antimicrobial
activity was worked by a single helix peptide but not multiple helix
peptide. On the basis of analysis by PyMOL software, we found that
the three-dimensional structure of SjLys-C contains a HLH motif, i.e.
a-helix 1 (H;), Asn®®-Gly>%; loop (Lp), Gly>'-Asn®’; and a-helix 2
(H5), Pro®8-Cys’®. Therefore, it is speculated that the HLH motif played
an important role in mechanism of non-enzymatic antimicrobial
action of SjLys-C. The more potent antimicrobial activity of the
heat-treated SjLys-C indicated that the structure standing somewhere
else in SjLys-C had conformational changes which are favorable for
enhancing antimicrobial activity. To confirm this prediction, the results
of molecular dynamics simulation showed that tertiary structure of
SjLys-C kept stability under the condition of 100°C compared to 30°C.
However, the comparison of structures demonstrated that several
parts of the SjLys-C protein were reset after the heat treatment. On the
one hand, the expansion of the N terminal region and C terminal
region resulted the exposure of two active residues (Ser18 and His48).
On the other hand, the SjLys-C protein has more compact structure at
100°C because of the shortened atomic distance between the active
residues of Ser18 and His48. Meanwhile, it has been demonstrated in
the study that the active residues Ser18 and His48 was buried in the
hydrophilic region. Therefore, it is concluded that the reduced distance
between the two active sites of SjLys-C would enhance the hydrophilic
interaction which might strengthen its antibacterial activity after
being heated in boiled water.

In conclusion, we have been able to obtain soluble and active
recombinant SjLys-C in sufficient amounts for further biochemical and
structural studies. This work also provided an effort to assess its
application in large-scale production. It is predicated that the peptide
product of SjLys-C will be a potent antimicrobial agent and have a
potential use in aquaculture and food industry.
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