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Background: Sugarcane bagasse was shown to be an adequate substrate for the growth and aroma production by
Trichoderma species. In the present work the ability of Trichoderma viride EMCC-107 to produce high yield of
coconut aroma in solid state fermentation (SSF) by using sugarcane bagasse as solid substrate was evaluated.
The produced aroma was characterized.

Results: Total carbohydrates comprised the highest content (43.9% w/w) compared with the other constituents in
sugarcane bagasse. The sensory and gas chromatography-mass spectrometric (GC-MS) analysis revealed that
the highest odor intensity and maximum yield of volatiles were perceived at the 5th d of induction period. The
unsaturated lactone, 6-pentyl-a-pyrone (6-PP), was the major identified volatile compound. Saturated
lactones, 6-octalactone, y-nonalactone, y-undecalactone, 'y-dodecalactone and 6-dodecalactone, were also
identified in the coconut aroma produced during the induction period (12 d). A quite correlation was found
between the composition and odor profile of the produced aroma. The effect of varying the concentration of
sugarcane bagasse on 6-PP production and biomass growth was evaluated. The results revealed high 6-PP
production at 4.5 g sugarcane bagasse whereas the biomass showed significant (P < 0.05) increase by
increasing the concentration of sugarcane bagasse.

Conclusion: The concentration of 6-PP, the most contribution of coconut aroma, produced in present study
(3.62 mg/g DM) was higher than that reported in previous studies conducted under the same fermentation
conditions. The significant increase in biomass with increasing the concentration of sugarcane bagasse may be
attributed to the increase in sugar content that acts as carbon and energy source.

© 2014 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

compounds) by microorganisms [2,3,4,5,6,7,8,9]. Although several
bacteria, yeast and fungi have been reported for the production of

In recent years the consumers' demand for natural food additives is
rising. The food and drug administration [1] stated that to qualify as
‘natural’, flavorings have to be produced by physical, enzymatic or
microbiological processes from natural sources. The Food and Drug
Administration (FDA) defines natural aroma and specifies the type of
substances generally regarded as safe for use as natural flavors
including any substance that is extracted, distilled, or otherwise
derived from plant or animal matter. Microorganisms play an
important role in the generation of natural compounds, particularly in
the field of food aromas. Several reports and reviews have been
published on the production of volatile compounds (aroma
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aroma compounds, a few species of yeasts and fungi have generally
been preferred, and only a few of them find industrial application due
to their generally regarded as safe (GRAS) status. Nowadays, there has
been an increase trend toward the more efficient use of
agro-industrial wastes including sugarcane bagasse [10,11]. Wastes
from the food and agricultural industries that are produced in large
quantities and are rich in carbohydrates and other nutrients can serve
as a substrate for the production of chemicals and enzymes by using
the technique of solid state fermentation (SSF), mainly due to their
low cost [12]. In Egypt, the processing of the high production of
sugarcane (15.77 million tons, Ministry of Agriculture, 2011-2012)
gives rise to a large amount of sugarcane bagasse whose accumulation
leads to an important problem of environmental pollution. SSF has
been used for the production of aroma compounds by cultivating
fungi using agro industrial residues as substrates [11]. The nature of
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the solid substrate used is an important aspect. However, the solid
substrate not only supplies nutrients for microbial culture, but also
serves as the physical support for the growth of microbial cells.
Production of coconut aroma by Trichoderma species in SSF have been
investigated in previous studies [11,13,14]. Trichoderma species
are reported as good producers of the unsaturated 6-lactone
6-pentyl-a-pyrone (6-PP) [15,16]. This compound is of interest in the
food industry; it was found to be the major volatile compound
contributing to the coconut-like aroma in cultures of Trichoderma
viride [17]. 6-PP is approved as a flavoring agent by Joint Expert
Committee on Food Additive [16]. Fungicide properties of 6-PP
were also reported [16]. Ramos et al. [13] and Penha et al. [11] stated
that the biosynthesis of 6-PP by Trichoderma species in SSF was
accompanied by the production of other compounds. However, the
authors of these studies didn't identify these compounds. T. viride
EMCC-107 was recorded only in Egypt by the Microbiological
Resources, Center. This strain was used for bio-treatment of agro
industrial wastes [18] but to the best of our knowledge it was not
used for aroma production. Therefore, in this study the ability of
T. viride EMCC-107 to produce high yield of coconut aroma in SSF by
using sugarcane bagasse as substrate was explored. Characterization
of the volatile compounds accompanied the 6-PP production and
evaluation of their influence on the overall odor profile of the aroma
produced during the period of fermentation was estimated. The
study was extended to evaluate the effect of varying the level of
sugarcane bagasse on culture growth and aroma production. Finally,
the relationship between the sensory profile and composition of the
produced aroma was investigated.

2. Materials and methods
2.1. Microbial strain and culture media

The T. viridle EMCC-107 purchased from the collection of
Microbiological Resources Center (MIRCEN, Egypt) was used. The strain
was maintained on malt extract medium at 4°C and cultured in Petri
dishes at 28°C. A 5 d-old mycelium obtained under these conditions
was used to inoculate the liquid media. The latter medium (50 mL),
containing malt extract (20 g/L) and glucose (10 g/L), pH 5.6, was
placed into 250 mL Erlenmeyer flasks and autoclaved at 121°C for
20 min before inoculation with 1 mL of mycelium grown on malt
extract medium. The flasks were incubated at 28°C for 72 h on orbital
rotary shaker (100 rpm). The mycelium formed was separated
by decantation and rinsed twice with physiological saline solution (0.9%
Nacl). It was then suspended into 50 mL of the same saline solution
and 2 mL of this suspension were used to inoculate the solid cultures.

2.2. Substrate preparation

Sugarcane bagasse was obtained from a local market for the
production of sugarcane juice in Egypt. The bagasse was subjected to a
drying process at 60°C for 24 h and ground in a granulator mill using
knives and hammer (1 mm).

2.3. Chemical composition of sugarcane bagasse

The chemical constituents of sugarcane bagasse were determined as
described by AOAC [19]. Fatty acid composition of the lipid fraction was
determined according to AOAC [20].

2.4. Fermentation conditions

Fermentation process was conducted for 12 days and analyzed for the
production of coconut aroma at the 3, 5, 7, 9, 12th d. The solid substrate,
comprising 4.5 g sugarcane bagasse was placed into 500 mL conical
flask and autoclaved at 121°C for 20 min. Each flask was impregnated

with 25 mL of sterile medium containing (g/L) glucose, 30.0; (NH4),SO04,
0.94; KH,POy4, 7.0; Na,HPO,4.7H,0, 2.0; MgS0,4.7H,0, 1.5; CaCl,.2H,0,
0.008; FeCl5.6H,0, 0.008; and ZnS0,4.7H,0, 0.0001 [14]. The flasks were
inoculated with 1 mL of mycelia cell suspension and incubated at 28°C.
The same conditions of SSF that revealed the high quality of coconut
flavor and optimum yield of 6-PP (the most contributor of coconut
aroma) was carried out but with variable levels of sugarcane bagasse
(1.5, 3.0, 4.5 and 6.0 g/500 mL conical flask).

2.5. Dry matter measurement

Dry matter (DM) was determined by weight differences, 2-3 g
fermented substrate was weighed and then dried to constant weight
at 105°C.

2.6. Sensory evaluation

The effect of incubation time on the odor profile and intensity of the
perceived odor of T. viride EMCC-107 culture in SSF on sugarcane
bagasse was investigated. A panel of 10 members (National Research
Center, Cairo, Egypt) characterized the odor of the fungal culture on
the 3rd, 5th, 7th and 12th d. The odor description was assessed and
the intensity was estimated on a 4 point scale (+: weak odor, ++:
medium odor, +++: strong odor, ++++: very strong odor). The
time of incubation period that revealed the optimum quality of
coconut odor was selected to estimate the effect of varying the level of
sugarcane bagasse on the intensity of the perceived odor. A nine-point
hedonic scale (1 = not perceptible to 9 = strong perceptible) was
used. Samples were identified with three digit code numbers and
presented in a random sequence to the panelists.

2.7. Extraction of aroma compounds

Sample (4.5 g) was removed from each solid state culture and placed
into 250 mL flask with 50 mL distilled water. The aroma compounds
were extracted from the samples with 50 mL dichloromethane.
Internal standard (IS); y-decalactone (0.5 mg in dichloromethane) was
added to each sample before extraction. After extraction the mixture
was dried over anhydrous sodium sulfate for 12 h and concentrated
using a rotary evaporator at 40°C under reduced pressure to final
volume (100 pL) under a flux of nitrogen before analysis.

2.8. Gas chromatographic (GC) analysis

GC analysis was performed by using the Hewlett-Packard model 5890
equipped with flame ionization detector (FID). A fused silica capillary
column DB5 (60 m x 0.32 mm, i.d.) was used. For fatty acid analysis, the
oven temperature was programmed from 50 to 240°C at a rate of 3°C/
min. Helium was used as the carrier gas, at flow rate 1.1 mL/min. The
injector and detector temperatures were 220 and 250°C, respectively.
For analysis of the extracted coconut aroma, the oven temperature was
maintained initially at 50°C for 6 min, and then programmed from 50 to
240°C at a rate of 3°C/min. The injector and detector temperatures were
220 and 240°C, respectively. The retention indices (Kovats index) of the
separated volatile compounds were calculated with hydrocarbons (C8-
(22, Aldrich Chemical Co.) as references. The relative concentration of
each individual compound was determined by comparing the peak area
of the compound in each chromatogram with that of -y-decalactone (IS),
assuming all response factors were 1.

2.9. Gas chromatographic-mass spectrometric (GC-MS) analysis

The analysis was carried out using a coupled gas chromatography
Hewlett-Packard (5890)/mass spectrometry Hewlett-Packard-MS
(5970). The ionization voltage was 70 eV, mass range m/z 39-400 amu.
The GC condition carried out as mentioned above. The isolated peaks
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were identified by matching with data from the library of mass spectra
(National Institute of Standard and Technology) and comparison with
those of authentic compounds and published data [21].

2.10. Statistical analysis

Data were analyzed using the analysis of variance (ANOVA) by
the stat graphics package, Statistical Graphics Corporation, 1993,
Manugistics Inc., USA [22]. The multiple range test L.S.D. (Duncan
multiple range test), with significant level at P < 0.05, was applied to
the results to test the significant difference.

3. Results and discussion
3.1. Chemical composition of sugarcane bagasse

Production of the volatile compounds by fungi in SSF can be
influenced by the type and constituents of the substrate used that act
as carbon and energy sources [6,23]. In the present study the low level
of moisture (11.3% w/w) in dried sugarcane bagasse may be correlated
to the processing methods used during its preparation. In SSF the
fermentation take place in the absence or near absence of free water,
thus being close to the natural environment to which microorganisms
are adapted [10]. The protein content (1.9% w/w) in dried sugarcane
bagasse was as low as that detected in previous study [11]. The effect
of culture parameters and choice of precursors for 6-PP biosynthesis
was studied [24]. The authors concluded that a low nitrogen level was
favorable for 6-PP biosynthesis. In the present study the level of lipid
(0.20% w/w) was lower than that reported (1.36 and 0.7% w/w) in
previous studies [11]. The fatty acid composition of the lipid fraction
was palmitic, 33.64 £ 0.23%; palmitoleic 5.34 + 1.62%; heptadecanoic,
7.78 £ 0.48%; stearic, 5.06 &+ 0.23%; oleic, 23.06 4 0.60%; linoleic,
21.04 + 0.51% and linolenic, 4.05 4 0.36%. It was demonstrated that it
is possible to produce 6-PP from different vegetable oils containing
non-hydroxylated e.g. oleic, linoleic and linolenic fatty acids [16].
The total carbohydrates comprised the highest content (43.9% w/w)
compared with other constituents in sugarcane bagasse in present
study. It is higher than that reported in previous literatures [11]. Sugars
used as a carbon energy source by Trichoderma sp. for the production
of 6-PP at the same efficiency as that with fatty acids [16].

3.2. Dry matter (DM)

The DM of the fermented substrate showed significant (P < 0.05)
increases by increasing the incubation period up to 7 d followed by
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Fig. 1. Evolution of biomass during incubation period (12 d).

insignificant (P > 0.05) increase (Fig. 1). This result is in agreement
with that of De-Araujo et al. [14]. The toxic effect of 6-PP, the
major volatile compound produced during fermentation, toward the
fungal growth was demonstrated in previous studies [16]. The high
production of 6-PP after 5 d of incubation in present study (as will be
discussed below) may be transformed into other compounds. This
transformation probably serves to avoid the toxic effect that this
molecule has on the growth of Trichoderma species [25]. The effect of
varying the concentration of sugarcane bagasse on the culture growth
is shown in Fig. 2. It is obvious that increasing the level of sugarcane
bagasse in SFF media gave rise to a significant (P < 0.05) increase in
the biomass production. This finding may be correlated to the increase
in the quantities of sugar and oil, in the solid substrate, that can
be acted as a carbon and energy sources. Bonnarme et al. [16]
demonstrated that oils and sugars promote biomass and 6-PP
accumulation and at the same time the oil acts as a detoxifying agent
against the toxicity effect of the high production of 6-PP.

3.3. Sensory evaluation

The effect of fermentation time on the characteristics of the perceived
aroma and the total released volatiles produced by T. viride EMCC-107 in
SSF on sugarcane bagasse are shown in Table 1. Strong coconut aroma
was perceived after incubation for 5 d. The intensity of coconut aroma
decreased after 7 d. After 9 d the odor was rather weak coconut/fruity.
Whereas, after 12 d odor of the culture possessed slight sweet fruity
aroma. It is obvious that, the aroma intensity was correlated with the
yield of total volatiles detected by GC analysis. The effect of varying the
concentration of sugarcane bagasse on the intensity of coconut aroma
was investigated on the 5th d of fermentation that showed the
optimum intensity of coconut aroma and highest yield of volatiles
Table 1. As shown in Fig. 3, the optimum intensity of coconut aroma
was perceived by using 4.5 g of sugarcane bagasse as solid substrate.

3.4. Analysis of aroma compounds

3.4.1. Effect of time of fermentation on aroma production

A total of six volatile compounds were identified in the volatiles
extracted from the SSF culture of T. viride EMCC-107 during the
incubation period (12 d). Table 2 shows the recovered amount of
each compound as well as the description of its odor as reported in
literatures. 6-PP, the potent aroma compound in coconut aroma, was
the major compound after incubation for 5 d. It comprised more than
98% of all identified compounds as observed by GC-MS analysis. 6-PP
is known as one of the major volatile compound biosynthesized by
certain species of Trichoderma fungi which occurring commonly in soil

wv
—

Dry matter (g)

1.5 3 4.5 6
Weight of sugarcane bagasse (g)

Fig. 2. Influence of sugarcane bagasse level on the biomass production.
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Table 1
Effect of fermentation time on the aroma characteristics and production of total volatiles.

Fermentation time (d) Aroma description ~Aroma intensities Total volatiles (mg)

3 Fermented note ++ -

5 Coconut aroma ++++ 17.55%
7 Coconut aroma +++ 16.18*
9 Coconut/fruity + 3.10°
12 Sweet/fruity + 0.41¢

+: weak, ++: medium, + ++strong, ++++: very strong.
Experimental values in the same columns followed by different superscript letters are
significant different (P < 0.05).

[17]. This compound was identified as the predominant compound with
other volatile compounds in the aroma produced by Trichoderma
harzianum in SSF [11,13] however; no study identified these other
compounds. The amount of 6-PP recovered after 5 d of fermentation
in the present study (3.62 mg/g DM) was higher than that reported in
previous studies under the same SSF conditions. The maximum yield
(2.8 mg/g DM) obtained by T. harzianum was achieved after 10 d of
fermentation using sugarcane bagasse as support [26]. Less production
of 6-PP was obtained by Ladeira et al. [27] and Penha et al. [11]
(0.254 and 0.093 mg/g DM, respectively) using the same support and
fermentation conditions, but with other strains of T. harzianum. High
production of 6-PP was achieved after 5 d of fermentation (3.0 mg/g
DM) by Trichoderma species 897 using sugarcane bagasse as support
[13]. The authors estimated the recovered value of 6-PP to be equal
to 940 mg/L of liquid solution adsorbed on the substrates and
they reported that this value is higher than that recovered in liquid
cultures. As shown in Table 2, the increase in incubation time revealed
a significant decrease (P < 0.05) in the production of 6-PP. This finding
was observed in liquid medium fermentation [28,29,30] and SSF
[11,13]. It is possible that the high 6-PP concentration obtained in
the present work had activated fungi metabolism to reduce this
concentration as a defense mechanism trying to avoid its toxic effect
[13,28] stated that after being produced, 6-PP was either adsorbed and
or metabolized by fungus. The second option is more likely as 6-PP
determination in the solid phase showed no traces of the molecule in
fungal biomass. The authors suggested that 6-PP was transformed into
other compounds as it had been observed for Botrytis cinerea cultures
[25]. As shown in Table 2 the saturated lactones &-octalactone,
y-nonlactone, 'y-undecalactone, y-dodecalactone and 6-dodecalactone
were represented at low concentrations [16,31,32,33]. However, their
presence confirmed the odor sensory analysis of the perceived aroma
Table 1 during the fermentation time, particularly with the significant
(P <0.05) decrease of 6-PP at the end of the induction period.

A

Aroma intensity
IN o
1
I-% I
N w
6-PP (mg/g DM)

T T T 0
0 1.5 3 4.5 6 7.5

Concentration of bagasse (g)

Aromaintensity =~ ==¢=—6-PP

Fig. 3. Intensity of perceived coconut aroma and 6-PP production at different concentration
of sugarcane bagasse.

Table 2
Volatile compounds produced by T. viride EMCC-107 grown on sugarcane bagasse during
12 d of fermentation.

Volatile compounds® RI*  Time of fermentation (d) Aroma description?

5 7 9 12
§-Octalactone 1290 0.052° 0.013" - - Coconut
v-Nonlactone 1369 0.129% 0.323° 0.080° - Peach
6-Pentyl-a-pyrone 1513 3.622% 3.165° 0.400° - Coconut

v-Undecalactone 1628 0.013* 0.011* 0.100° 0.062¢ Peach
y-Dodecalactone 1763 0.007* 0.006* 0.036° - Slight coconut/fruity
6-Dodecalactone 1800 0.013* 0.004° 0.059° 0.026% Sweet/fruity

Values are the average of triplicate analysis, mg/g dry matter of fermented substrate. Mean
values in the same row followed by different superscript letters are significantly different
(P<0.05).

¢ Kovat indices.

b Compounds are listed according to their elution on DB5 column.

4 Padolina et al. [31]; Bonnarme et al. [16]; Leffingwell and Alford [32]; Takeoka et al. [33].

3.4.2. Effect of sugarcane bagasse level on 6-PP production

Previous studies reported the sugarcane bagasse as the most potential
solid substrate for the production of 6-PP by using Trichoderma species
concentrations [11,14]. However, no study could be found concerning
the effect of varying the level of sugarcane bagasse on the production of
coconut aroma compounds, particularly 6-PP. As shown in Fig. 3 the
increase in the amount of sugarcane bagasse revealed a gradual
increase (P < 0.05) in 6-PP production up to 4.5 g (3.62 mg/g DM)
followed by a significant (P < 0.05) decrease reaching 1.71 mg/g DM by
using 6.0 g of sugarcane bagasse as solid substrate. The addition of
sugarcane molasses, as carbon source, to citric pulp that used as solid
substrate for production of fruity aroma by Ceratocystis fimbriata
increased the production of the total volatiles [34]. Nevertheless, 15%,
w/w of added sugarcane bagasse to citric pulp was found more
effective than 25% w/w. The increase in 6-PP production may be
correlated to the increase in the content of lipid and sugar that are the
main constituents of sugarcane bagasse in the present study. Consistent
6-PP levels were found to be produced from glucose as well as from
fatty acids (hydroxylated or non-hydroxylated) by T. viride TSP, [16]. At
the same time, oil acts as a detoxifying agent against the toxicity effect
of the higher production of 6-PP. As elucidated early by Vick and
Zimmerman [35] 6-PP biosynthesis in Trichoderma species could have a
first step that depends on the formation of 13-hydroperoxide from
linoleic acid. The lipoxygenase reaction is followed by B-oxidation and
isomerization to form 5-hydroxy-2, 4-decenoic acid. Afterwards,
internal lactonization on the Cs hydroxyl group with the carboxylic
group of the same molecule gives rise to 6-PP production. The
significant decrease in 6-PP production may be correlated to the fact
that the high concentration of 6-PP may activate the fungi metabolism
to reduce this concentration as a defense metabolism to avoid its toxic
effect [11,13,28]. On the other hand 6-PP may be transformed into
other compounds as mentioned before.

4. Conclusion

The production of 6-PP by T. viride EMCC-107 in SSF on sugarcane
bagasse after 5 d of fermentation was higher (3.62 mg) than
that reported in previous studies using the same substrate and
fermentation conditions. The identification of the saturated <y- and
&-saturated lactones accompanied with 6-PP production confirmed
the changes in aroma profile during the induction period (12 d).
Variation in the level of sugarcane bagasse influenced the volatile
production and culture growth. The positive correlation between the
level of sugarcane bagasse and biomass production was attributed to
the total sugar content that acts as carbon and energy source. In
general using sugarcane bagasse as solid substrate in SSF for high 6-PP
production by T. viride EMCC-107 has an economic and environmental
benefits.
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