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ABSTRACT

Background: Industrial food processing induces protein glycation modifications and toxic advanced glycation end
products (AGEs) which affect human health. Therefore, it is of interest to monitor AGEs in food processing. The
present study was carried out to investigate the influence of lotus seedpod oligomeric procyanidin (LSOPC)
concentrations, solution pH value and metal ions on AGE formation by heat treatment of lactose-lysine
model solutions. Ne-(carboxymethyl) lysine (CML), as one of the common AGEs was also determined by
HPLC-MS/MS in this experiment.

Results: The results showed that LSOPC can inhibit the formation of AGEs effectively at higher concentrations,
lower temperature, and it can reverse the promotion function of metal ions because of its high inhibition
activity. Also, LSOPC can inhibit CML formation in the Maillard reaction as well.

Conclusion: These results indicated that LSOPC could be used as functional food ingredients to inhibit AGE
formation.

© 2014 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Advanced glycation end-products (AGEs) are formed as a result of a
non-enzymatic Maillard or ‘browning’ reaction in which glucose forms
adducts with proteins, lipids and nucleic acids [1]. First, carbonyl
group forms a reducing sugar and an unprotonated amine group
forms a protein producing a nucleophilic addition reaction to form a
freely reversible Schiff base. This is subsequently stabilized after
rearrangement into Amadori products or Heyns products according to
the type of sugar involved (aldoses or ketoses). With additional
complex rearrangements such as oxidation, enolization, dehydration,
condensation and fragmentation, early glycated products are formed
[2]. Subsequent further reactions (cross-linkages and polymerization)
lead to the formation of AGEs [3]. AGEs were originally characterized by
a yellow-brown fluorescent color and by an ability to form cross-links
with and between amino groups, but the term is now used for a broad
range of advanced products of the glycation process (also called the
“Maillard reaction”). Generally, these compounds can be divided into

* Corresponding author.
E-mail address: sunzhida@sina.com (Z.-D. Sun).
Peer review under responsibility of Pontificia Universidad Catélica de Valparaiso.

http://dx.doi.org/10.1016/j.ejbt.2014.10.005

two types on the basis of chemical structure: one type is the fluorescent
properties and crosslinking structure AGEs, such as crossline,
2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI), glyoxal-lysine dimer
(GOLD), methyl-glyoxal-lysine dimer (MOLD), fluorolink, pentosidine
and vesperlysine, and the other type is the non-fluorescent and
non-crosslinking AGEs, such as Ne-(carboxymethyl) lysine (CML),
Ne-(carboxyethyl) lysine (CEL), pyrraline and argpyrimidine [4].

Recently, AGEs in vivo have been implicated in the pathogenesis of
diabetic complications, including neuropathy, nephropathy, retinopathy,
and cataract [5] and other health disorders such as atherosclerosis [6],
Alzheimer's disease [7] and chronic kidney disease, as well as other
phenotypes related to aging [8]. Other detrimental effects of the
glycation process are their contribution to the functional properties of
proteins such as their emulsifying, foaming and gelling capacities as
well as their solubility [9,10] and the production of toxic and
carcinogenic compounds such as the low-molecular weight products,
keto-aldehydes, glyoxal, methylglyoxal, 3-deoxyglucosone, heterocyclic
amines and acrylamide [11].

The two major sources of human exposure to AGEs are exogenous
AGEs found in foods, and endogenous AGEs that are generatiod by
abnormal glucose metabolism or as a byproduct of lipid peroxidation.
The contribution of dietary AGEs to the total pool of AGEs in the body
is likely to be much greater than the contribution from AGEs that are
endogenously generated by abnormal glucose metabolism or lipid
oxidation [12]. Since dietary AGEs are absorbed as free adducts after
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digestion they are likely to constitute a major source of intracellular and
plasma AGEs [13]. Moreover, dietary AGEs are also a major
environmental source of proinflammatory AGEs [14]. Industrial
processing or cooking of food is rich in AGEs because of the high
temperatures that are used in processing, such as deep frying, baking
and broiling [15]. Thus, the role of dietary AGEs in human health
remains highly controversial and the restriction of food-derived AGEs
or the inhibition of absorption of dietary AGEs may be a novel target
for therapeutic intervention in the above-mentioned AGE-related
disorders.

Lotus seedpod is not an edible part of lotus, which is rich in B-type
procyanidins. Lotus seedpod oligomeric procyanidins (LSOPC)
(molecular structure; Fig. 1) is a kind of mixture, which doesn't have
certain molecular weight. The mean degree of polymerization of
LSOPC was 3.21, with 74.2% catechin and 25.8% epicatechin in the
terminal units and 26.0%, 43.1%, 30.9% of catechin, epicatechin,
epigallocatechin in the extensive units, respectively, which were
detected by HPLC/MS. Our laboratory has established the proper
extraction technology of LSOPC in recent years [16]. Furthermore,
antioxidant properties, metal-chelation and free radical scavenging
activity of oligomeric Procyanidins of lotus seedpod (LSOPC) have
been extensively identified [17]. In recent years, much attention has
been paid to the influence of LSOPC on insulin action and reactive
carbonyl species (RCS) scavenging activities, which may provide
benefits for diabetic patients [16,17]. Some researchers indicated that
LSOPC may play a useful role in the treatment of cognitive impairment
caused by Alzheimer's disease and aging due to their excellent
performance in scavenging free radicals, antioxidation, anti-lipid
peroxidation [18]. Moreover, our previous studies have showed that
LSOPC could inhibit AGE formation effectively in simulated
physiological environment and the corresponding inhibition
mechanisms to scavenging reactive carbonyls by forming adducts
with them [19]. However, there are few reports about LSOPC
inhibiting AGE formation especially in food system. In this study, a
model system was chosen consisting of lactose (as a reducing
disaccharide) and lysine (as a very reactive amino acid) to monitor
the AGE formation, and observed the effect of different LSOPC
concentrations, solution pH values and metal ions on inhibiting AGE
formation. This type of modeling system can be a powerful tool to
improve our understanding of the evolution of AGEs during food
processing with AGE inhibitor.

E units

Table 1
MS/MS conditions for the compounds studied.
Analyte Molecular Parention Daughter tR DP CE EP  CXP
weight (m/z) ion (m/z) (min) (V) (eV) (V) (V)
CML 205 205.2 84.0 7.20 71 31 10 12
130.1 74 18

2. Materials and methods
2.1. Chemical and reagents

Lotus seedpods were obtained from local supermarket (Wu Zhi 2
hao). a-Lactose, L-lysine, phosphate buffer saline (PBS, pH 7.4),
p-glucose and FeCl3 were purchased from Sinopharm (Shanghai,
China). FeCl,-4H,0, CuCl,-2H,0, MgCl,-6H,0, ZnCl,, CaCl,-2H,0,
SnCl,-2H,0 and AICl5-6H,0 were purchased from Sigma-Aldrich
(St. Louis, MO). All other chemicals were of analytical grade.

2.2. Preparation of lotus seedpod oligomeric procyanidins

Fresh lotus seedpod fragments were extracted using 70% ethanol at
60°C for 1.5 h. The crude procyanidin aqueous solution was loaded onto
an AB-8 resin (weak polarity macroporous resin, 0.3-1.25 mm particle
size, Nankai Hecheng Science & Technology Co., Tianjin, China)
column (15 x 3.5 cm, ID), and the fraction eluted by 70% ethanol was
collected. The eluent was evaporated, and the procyanidin extract of
lotus seedpod was obtained. Subsequently, they were extracted by
ethyl acetate to get the oligomeric procyanidins of lotus seedpod
(LSOPC), which included catechin monomers, B-type procyanidin
dimers, trimers and a few tetramers by LC-MS analysis [20]. The yield
of LSOPC was 0.8%. Its purity was 106.22 + 0.46% compared to that of
grape seed procyanidins measured by Butanol-HCI assay [21].

2.3. Preparation of model systems

In order to study the Maillard reaction in real food systems, in
particular in milk and milk products, lactose was chosen as the model
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Fig. 1. Scheme of LSOPC: terminal Unit, T-units; extension units, E-units.
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Fig. 2. HPLC-MS/MS response and scheme of mass fragmentation for CML. a—production mass spectra; b—MS chromatogram.

carbohydratio, and lysine was chosen as the model amino acid. The
development of the Maillard reaction in food system depends on
processing time and temperature, as well as other environment
factors. Higher reaction temperature and longer reaction time will
both promote the reaction. The formation of AGEs can be used to
quantify the intensity of the Maillard reaction. a-Lactose and L-lysine
were dissolved in bidistilled water at a concentration of 0.045 mol/L.
In order to research the influence of different concentrations of LSOPC
on the course of the Maillard reaction, LSOPC was dissolved at
different concentrations from 1 mg/mL to 0.02 mg/mL. The reaction
solutions were prepared at different pH values ranging from 5 to 8 to
determine the influence of pH conditions on AGE formation. As to
determine the influence of metal ions on the AGE formation in the
process, different concentrations of metal ion salt solutions were

prepared: Ca?™, Cu®*, Fe?*, Mg?* and Zn?* were dissolved at the
concentrations of 0.1, 1, 10 and 50 ppm and AI**, Fe** and Sn?™
were dissolved at the concentrations of 0.1, 1 and 10 ppm respectively
because of their low solubilities.

2.4. Measuring the development of the Maillard reaction

Test tubes containing 0.8 mg/mL LSOPC and 0.045 mol/L
a-lactose/L-lysine model mixtures were screw-sealed and heated
in a constant temperature water bath at 80°C and 100°C. The samples
were taken after 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 h at 80°C; 4, 6, 8, 10, 15,
20, 30 and 60 min at 100°C to monitor the course of the reaction.
After heating, the tubes were immediately cooled under ice bath and
stored in a refrigerator (-20°C) to terminate reaction. Then, all
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samples quantitatively assessed the formation of fluorescent AGEs
using a spectrofluorimeter (Shimadzu RF-5301) at excitation and
emission wavelengths of 370 nm and 440 nm, respectively. The same
mixtures without LSOPC were as control. The mixtures without
heating were as blank. The percent inhibition then calculated as:
%inhibition = (Fcontrol - Fsample) / (Fcontrol - Fblank) x 100. Thus,
the optimum reaction time at 80 and 100°C were obtained.

Then, the model mixtures contain 0.045 mol/L a-lactose/L-lysine
and different concentrations of LSOPC, LSOPC (0.02, 0.05, 0.1, 0.2, 0.5,
0.8 and 1 mg/mL) at 80°C and LSOPC (0.1, 0.2, 0.5, 0.8 and 1 mg/mL)
at 100°C. They were all heated for optimum reaction time. The
inhibition ratios were obtained by the same way above. ICsq values
were calculated from inhibition ratios obtained at all tested
concentrations.

Subsequently, 0.8 mg/mL LSOPC and 0.045 mol/L a-lactose/i-lysine
model mixtures were dissolved in 0.2 M phosphate buffer saline in
order to adjust the pH to 5, 5.5, 6, 6.5, 7, 7.5 and 8, respectively. The
solutions were all heated for optimum reaction time at 80°C and
100°C. Then, the inhibition ratios of LSOPC at different pH values were
obtained by the same way above.

Finally, metal ions were added to a mixed solution of 0.8 mg/mL
LSOPC and 0.045 mol/L o--lactose/t-lysine model mixtures. Each
mixture was heated at 80°C under pH 5 or 6.5 for optimum reaction
time. The inhibition ratios of LSOPC under different metal ion
conditions were obtained by the same way above.

2.5. Inhibition effect of LSOPC on CML formation

2.5.1. Sample preparation

The model mixtures containing a-lactose (0.045 mol/L), L-lysine
(0.045 mol/L) and LSOPC (0.2, 0.4, 0.6, 0.8 and 1 mg/mL) were heated
at 100°C for 30 min. All samples were cooled in ice water to stop any
further reaction then continue to purification steps.

A 100 pL volume of incubated solution was reduced overnight at 4°C
by sodium borohydride solution (0.2 M, 100 pL). Each sample was
centrifuged at 20,000 rpm for 60 min in an ultracentrifuge at -4°C
(Sigma, Germany), the isolated solution was eluted on a 6 mL Cleanert
C18 cartridge (Agela, China). The Cleanert C18 was washed with 3 mL
of methanol-water-formic acid (30:70:0.1, v/v/v). The eluate was
dried under vacuum and dissolved in 0.1% aqueous formic acid
(1 mL). 10 pL volume of sample was analyzed by HPLC-MS/MS system.

2.5.2. Determination of CML content by HPLC-MS/MS
The HPLC-MS/MS analysis for the determination of CML content was
as described by Ahmed and Assar with some modifications [22,23]. The
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chromatographic system consisted of a HPLC system (Waters, USA)
coupled to an AB Sciex API 5000 turbo-ion-spray triple quadrupole
tandem mass spectrometer using the electrospray positive ionization
(ESI+) method. Separations were conducted on a Symmetry C18
column (4.6 « 250 mm, 5 pm, waters, Ireland), conditioned at 25°C. A
10 pL volume of eluate or CML was injected into the reversed column,
and eluted with a mixture of methanol-water-formic acid (30:70:0.1,
v/v/v) at a flow rate of 0.2 mL/min. The main operational parameters
of the mass spectrometer were summarized as follows: Source/gas
collision gas (CAD) at 6 psi, curtain gas (CUR) at 20 psi, ion source gas
1 (GS1) at 60 psi, ion source gas 2 (GS2) at 50 psi, ionspray voltage
(IS) at 5500 V, and temperature (TEM) at 600°C.

The precursor ions to the product ions with rich structure features
were chosen for MRM detections of CML. Compound quantitative
optimization wizard was used to optimize the desolvation potential
(DP), entrance potential (EP), collision energies (CEs) and collision
cell exit potential (CXP) of these compounds. The respective
conditions were summarized in Table 1. Sample peaks corresponding
to CML were calculated by using the equation of the standard curve.
The equation is y = 0.1249x - 0.7418 (R®> = 0.9944). The
concentration of CML solution was 12.5, 25, 50, 100, 200, and 400 ppb,
respectively.

Fig. 2 illustrated the product ion spectra of CML by HPLC-MS/MS.
m/z 130 was selected as qualitative ions to as the daughter ion for
analyze, and the most abundant fragment was m/z 84 selected for
quantification to obtain high sensitivity.

2.6. Statistical analyses and graph drawing

The data of samples was analyzed by SPSS 18.0 (Expressed as
mean + S.D.). ICso was calculated by Probit Regression with SPSS. The
graph was drawn by OriginPro 8.0 and the compound structure was
drawn by ChemBioDraw 12.0.

3. Results and discussion
3.1. Optimum reaction time

Fig. 3 showed the formation level of AGEs by heating for 0.5-3.5 h at
80°C and heating for 4-60 min at 100°C. AGEs were enhanced greatly
during heating. While with 0.8 mg/mL LSOPC added, the formation of
AGEs was significantly inhibited. The inhibition ratio reached highest
value when heated for 2 h at 80°C (Fig. 3a) and 10 min at 100°C
(Fig. 3b) respectively. So we chose 2 h (at 80°C) and 10 min (at
100°C) as the optimum reaction times.
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Fig. 3. Inhibition of 0.8 mg/mL LSOPC on non-enzymatic glucosylation of protein in model system of a-lactose and L-lysine during different reaction times: (a) heated at 80°C for 0.5-3.5 h,

(b) heated at 100°C for 5-60 min.
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Fig. 4. Inhibition of LSOPC on non enzymatic glucosylation of protein in model system of c-lactose and L-lysine at different concentrations: (a) heated at 80°C for 2 h, (b) heated at 100°C for

10 min.
3.2. Influence of LSOPC concentrations

In order to study the inhibitory effect of LSOPC on non-enzymatic
glycation end product formation, different concentrations of LSOPC
were added to the lactose-lysine model system. During the reaction
period, the generation of AGEs had a negative correlation with the
concentrations of LSOPC regardless of the heating temperature: 80°C
or 100°C. When heated for 2 h at 80°C, the IC5q of LSOPC for AGEs was
0.165 + 0.019 mg/mL (Fig. 4a) whereas, the IC5q of LSOPC was
0.301 4 0.034 mg/mL when heated for 10 min at 100°C (Fig. 4b).
These results showed that the inhibition activity of LSOPC was
positively correlated with its concentration and LSOPC had higher
inhibition ability at 80°C compared to being heated at 100°C. One
possible explanation was that LSOPC had a higher antioxidant activity at
a lower temperature [16]. And another reason was that the reaction is
fiercer under 100°C to produce a large number of AGEs in a short time,
therefore it affected the inhibition activity of LSOPC. Overall, LSOPC had
a potential to inhibit the generation of AGEs in the lactose-lysine model
system.
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3.3. Influence of pH conditions

As we know, pH value varies in real food systems [24]. In order to
simulate real food system better, we assessed the inhibition effect of
LSOPC on advanced glycation end-product formation in a lactose-lysine
model system under different pH values, ranging from 5.0 to 8.0. Fig. 5
showed the formation of AGEs in different pH solutions by heating for 2
h at 80°C and heating for 10 min at 100°C. As the initial pH value was
increased, AGEs were increased exponentially. Clearly, the formation of
AGEs was to a little extent at low pH level (under pH 6.0). The best pH
values for fluorescence AGE formation were maintained in the range
from 7.0 to 8.0. The results were in accordance with those of Ai-Nong
Yu et al. [25]. With 0.8 mg/mL LSOPC added, the formation of AGEs
was significantly inhibited during 7.0 to 8.0. When heated at 80°C
for 2 h, inhibition ratio of LSOPC increased from 81.21 4+ 1.26% to
89.67 + 0.60% corresponding to pH 7.0, 7.5, 8.0 (Fig. 5a).
Inhibition ratio of LSOPC reached the highest at pH 8.0, being
67.59 4+ 1.10% when heated at 100°C for 10 min (Fig. 5b). To
conclude, it can be stated that LSOPC had an effective inhibition
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Fig. 5. Inhibition of 0.8 mg/mL LSOPC on non-enzymatic glucosylation of protein in model system of a-lactose and L-lysine at different pH values: (a) heated at 80°C for 2 h, (b) heated at

100°C for 10 min (n = 3).
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Fig. 6. The interaction of metal irons with LSOPC in model system of a-lactose and L-lysine under pH 5 at 80°C (n = 3). Inhibition ratio of all samples except for samples marked with an
asterisk were significantly different from that of control (P< 0.05): (a) AP, (b) Ca®™, (c) Cu?>™, (d) Fe?*, (e) Fe**, (f) Mg?™, (g) Sn*™, (h) Zn?*.

ability when the Maillard reaction happened severely at higher pH.
Also, it had a good inhibitory effect at lower pH when there were
little AGEs. Meanwhile, LSOPC showed much higher inhibition
activity at lower temperature in the same pH environment probably
for the reason that LSOPC has a better stability at lower temperature
[26].

3.4. Influence of metal ion conditions

The pH value for most of the food is neutral and weak acidic [24]. So
we choose pH 5 and 6.5 to do further research. The selection of the metal
concentrations was based on values encountered in real food systems,
particularly in milk and milk products [27]. The lowest concentrations

of the metals applied correspond to their solubilities and the values at
which they occur in food. Fig. 6 showed the influence of metal ions on
the formation of AGEs and the inhibition effect of metal ions on AGE
formation with LSOPC in the lactose-lysine model system when
heated at 80°C for 2 h under pH 5.

As shown in Fig. 6a, the addition of 1 ppm A" promoted the
formation of AGEs, whereas the addition of 0.1 and 10 ppm AI**
suppressed the AGE formation. 10 ppm A’ had the highest
inhibition ratio, up to 56.08 + 2.30%. After 0.8 mg/mL LSOPC added,
the inhibition ratio of the model solution containing AP™ at
concentrations of 0.1 and 10 ppm were increased to 75.46 + 2.76%
and 56.08 =+ 2.30% respectively. And 1 ppm AI*+ became to have an
inhibition effect in the presence of LSOPC.
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The addition of Ca? ", Mg? " and Zn?* in the concentrations of 1 ppm
and 50 ppm, increased the formation of AGEs in the lactose-lysine model
system, especially for 50 ppm Ca?*. However, the formation of AGEs
could be suppressed in addition of 0.1 and 10 ppm Ca®*, Mg?™" or
Zn?*, and 10 ppm Ca®*, 0.1 ppm Mg?* and 0.1 ppm Zn?>* had the
highest inhibition ratios, being 37.13 + 33.37%, 33.60 + 16.95% and
47.65 + 3.32%. After 0.8 mg/mL LSOPC was added, all concentrations of
metal ions inhibited the formation of AGEs, the highest inhibition ratio
of Ca?™, Mg?* and Zn?™ all appeared at the concentration of 0.1 ppm,
being 69.00 + 2.92%, 78.17 4 5.05% and 81.93 4 2.96% (Fig. 6b, f, h).

Fig. 6¢, d show the influence of Cu?>* and Fe? ™ on the formation of
AGEs and the inhibition effect of LSOPC on AGE formation with metal
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ions in the model system. The addition of 0.1 ppm Cu?™ or Fe?™
suppressed the formation of AGEs, while for the higher concentrations
(1, 10, 50 ppm) the formation of AGEs was promoted, especially for
50 ppm Cu?*. After 0.8 mg/mL LSOPC was added, they all inhibited
the formation of AGEs including the higher concentrations.

As shown in Fig. 6e, Fe> ™ promoted the formation of AGEs at all
concentrations (0.1, 1 and 10 ppm), especially for 1 ppm. However, all
concentrations of Fe** inhibited the formation of AGEs in the
presence of LSOPC. 10 ppm Fe> " had the highest inhibition ratio, up
to 74.43 + 2.13%.

Fig. 6g shows the influences of Sn®> " on the formation of AGEs
with and without 0.8 mg/mL LSOPC. They were similar to A>T,

b 100 +
g o
< .
& -100+ C(Ca™):
c I O ppm
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Fig. 7. The interaction of metal irons with LSOPC in model system of ot-lactose and L-lysine under pH 6.5 at 80°C (n = 3). Inhibition ratio of all samples except for samples marked with an
asterisk were significantly different from that of control (P < 0.05): (a) AP, (b) Ca®™, (c) Cu?>™, (d) Fe?*, (e) Fe>*, (f) Mg?*, (g) Sn**, (h) Zn?™.
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only 1 ppm Sn?* promoted the formation of AGEs in the absence of
LSOPC. Sn?™ at all concentrations (0.1, 1 and 10 ppm) inhibited the
formation of AGEs in the presence of LSOPC, the inhibition ratios
were 69.58 + 5.60%, 18.80 + 2.88% and 96.18 + 1.50% (Fig. 6g).

Fig. 7 shows the influences of metal ions on the formation of AGEs
with and without LSOPC when heated at 80°C for 2 h under pH 6.5.
The inhibition effects of most metal ions did not change compared to
that heated at pH 5.0. However, there were still some differences. For
Cu®™ and Fe?*, they had higher promotion effects at higher
concentrations (1, 10, 50 ppm) when heated at pH 6.5. By contrast,
Fe*> T has weaker promotion effects. When solution was heated at pH
5.0, 0.1 and 10 ppm Sn?™ inhibited the formation of AGEs in the
absence of LSOPC, but 1 ppm Sn?* had an opposite effect. In contrast,
Sn?T at all concentrations (0.1, 1 and 10 ppm) promoted the
formation of AGEs when heated at pH 6.5. After 0.8 mg/mL LSOPC was
added, they had the same influences on the formation of AGEs. When
heated at pH 5.0, Zn?" at the concentration of 0.1 and 10 ppm had
higher inhibition effect than that heated at pH 6.5, but lower
promotion effect. Their inhibition effects were similar in the presence
of LSOPC.

The effect of metal ions on AGEs formation was found to depend on
the type of amino acid and heating time, as well as on the type of
metal ion. It is known that a transition metal ion catalyzes the Maillard
reaction by the oxidative pathway [28,29] and the Maillard reaction
was suppressed by the coagulation of melanoidin in the presence of
various metal ions. According to Fallico and Ames [30], there was
respectively only a small effect of ion on the model systems.
However, in this study, almost all metal ions inhibited the
formation of AGEs at lower concentrations and had promotion effects
at higher concentrations. Cu?>* and Ca®™ ions at higher concentration
(50 ppm) enhanced AGE formation the most. However, they had
inhibition effects at all concentrations after LSOPC added. The possible
reason was that LSOPC has a significant inhibition effect because of
their antioxidant properties and carbonyl scavenging capacity [19],
and it can reverse the promotion function of metal ions. As figures
shown, the inhibition ratio of LSOPC decreased in the presence of
metal ions, indicating that LSOPC-metal ion chelates had a lower
inhibition effect than LSOPC. pH was found to have few contributory
effect to the formation of AGEs, except for Sn?>* and Zn?*.

3.5. Effect of LSOPC on CML formation

The effect of LSOPC on CML formation was shown in Fig. 8. In
a-lactose/i-lysine system, CML generation had a negative correlation
with the concentrations of LSOPC. 0.2, 0.4, 0.6, 0.8 and 1 mg/mL LSOPC
inhibition rates were 26.725 + 1.84%, 28.241 4 1.67%, 30.141 & 1.43%,
32.846 + 2.2% and 38.132 + 2.86%, respectively. These results showed
that LSOPC had a significant inhibition activity on the formation of CML
compared to other flavonoids such as rutin and quercetin [31].
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Fig. 8. Inhibition of CML formation by LSOPC in lactose-lysine model systems. Data points
are the mean of triplicate measurements =+ SD.

4. Conclusions

The presence of AGEs in food products raises concern since only
one-third of absorbed dietary AGEs are excreted, while the rest is
presumably incorporated into body tissues and is responsible for
food and age-related diseases [32,33]. So it is clear that a better
understanding and monitoring of AGE formation during food
processing is required. To conclude, it can be stated that LSOPC can
inhibit the formation of AGEs effectively at high concentrations under
temperature 100°C, and it can reverse the promotion function of
metal ions because of its high inhibition activity. In addition, LSOPC
can inhibit CML formation in Maillard reaction. Thus, LSOPC could be
helpful to prevent AGE formation in model system and with the
potential to be used as functional food ingredients.
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