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Background: In sheep breeding, there are situations where relationships recorded at the farm among pedigrees
such as parent-offspring, full-sibs or half-sibs need to be tested. A panel of 28 microsatellite (MST) markers
was tested to provide accurate pedigree information and resolve the common problem of significant error in
pedigree records in Merino sheep. Three different flocks of Australian Merino sheep were investigated.
A private farm flock represents a flock with no record availability. Two other flocks were maintained under
good managements of full keeping records and being selected for high and low parasite resistances.
Results: In the studied panel, eight MSTs provided an average of Polymorphic Information content (PIC) equal to
0.65 or more in order to be sufficient to make an accurate and successful DNA-based parentage analysis. The
panel of twenty-eight MST loci was obviously sufficient for providing 100% accurate pedigree and genotyping

data. DNA-based pedigree records were constructed and all significant pedigree record errors were eliminated.
Conclusions: These results were used for further study of population genetic parameters such as recombination
and haplotyping which heavily based on pedigree information. Nevertheless MST based parentage testing is
still available and affordable in most countries and for each farmer with reasonable cost in comparison with
fast growing SNP based parentage technologies.
© 2015 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In sheep breeding, there are situationswhere relationships recorded
at the farm among pedigrees such as parent-offspring, full-sibs
or half-sibs need to be tested. Many studies have shown that the
accuracy of pedigree recording is still deficient and the amount of error
in pedigree records made in the field is high [1,2]. Revealing pedigree
errors is a fundamental step in animal breeding in order to obtain
accurate values of heritability and estimated breeding values (EBVs).

Significant pedigree record errors seem to be a common problem in
sheep populations and show a lack of accurate pedigree information
that reduces the genetic progress of the populations whenever these
records are used [1,3]. It has been found in Merino sheep incorrect
pedigree record information for 9, 15 and 24% of singles, twins and
triplets, respectively [3]. The incorrectness of ewe pedigree recording
was usually due to ewes failing to keep their litter together, or lamb
desertion, whereas the error in ram pedigree records was due to wrong
recording of lambs at weaning or other times as progeny of particular
ram mated to ewes in one paddock [3].
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Genotyping of DNA using one or more of the genetic markers
has become the most common procedure for paternity testing and
pedigree inferences in human and livestock species. Many highly
polymorphic MSTs have been reported and these MST loci have alleles
that are often in the 70–250 bp range [4,5]. Rosa et al. [2] used panel of
MST in order to evaluate their use in paternity testing of Brazilian sheep.
They have shown that this MST panel was successful for paternity
inference in randomly chosen animals. Crawford et al. [1] studied the
reliability of pedigrees of five sheep flocks using protein polymorphisms
and MST markers and found that pedigree error ranged from 0.31 to 5%.
Barnett et al. [3] found that the overall proportion of Australian Merino
lambs with incorrect pedigrees was about 10% using MST markers. In the
same study it was also found that the proportion of error was 9.9% of
single lambs, 15.2% of twins and 3.9% in ram pedigree records.
Furthermore, Parsons et al. [6] reported that DNA-derived pedigree using
MSTmarkers could be successfully applied in the Australian Merino Sheep.
A panel of MSTs for establishing parentage analysis in Australian Merino
sheep was developed and used. The panel comprised sixteen MST markers
which were highly polymorphic; about half of them had heterozygosity in
excess of 80% [7]. The panel was extensively tested in Australian Merino
sheep, giving accurate parentage assignment to unambiguously
candidate parents even when they were highly related. It was estimated
that DNA-based parentage as a pedigree system would almost eliminate
any type of error because it has been reported that pedigree analysis
sevier B.V. All rights reserved.
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using MSTs was very close to 100% accurate [2]. Many and different MST
panelswere recommended andutilized for parentage testing in sheep [8].
In this study, a panel of 28 MSTs for establishing parentage in Australian
Merino sheep was tested for validation.

2. Materials and methods

2.1. Sheep

Three different populations of Australian Merino sheep were
investigated. A private farm flock represents a control population (CR).
Ewes were self-replacing and superior fine wool rams were purchased.
Two other populations were flocks maintained by the Commonwealth
Scientific and Industrial Research Organization (CSIRO, NSW). One of
these flocks was selected for low parasite resistance (LR) and the other
for high parasite resistance (HR). Both flocks originated from the same
initial population and have been totally separated from each other and
other Merino sheep populations since 1976 [9]. The numbers of
sampled sheep in the studied populations are shown in Table 1.

2.2. Sampling and DNA extraction

Tissue samples were taken from sheep ears. The samples were
digested overnight at 55°C in 0.5 mL digestion buffer with 200 μg
proteinase K. Following digestion, genomic DNA was extracted from the
tissue using phenol/chloroform extraction protocol [10]. After
extraction, DNA pellet was dried for 30 min in a 37°C incubator,
resuspended in 100 μL TE buffer and then incubated at 55°C for 5 min
to aid solubilization. DNA quantified and purified into 10 ng per mL.
Table 1
Average number of alleles, He, Ho, and PIC at twenty-eight microsatellite loci in the three
studied populations.

Flocks Individuals no. Alleles no. He Ho

Total Rams Ewes Progeny

CR 198 21 79 98 9.93 0.739 0.764
LR 155 5 71 79 8.39 0.718 0.724
HR 176 3 81 92 7.64 0.726 0.752

Locus PIC

CR LR HR

CSRD2108 0.601 0.616 0.668
MCM58 0.866 0.793 0.807
MCM147 0.820 0.877 0.842
INRA040 0.634 0.322 0.489
CSRD2105 0.781 0.607 0.657
OARHH30 0.451 0.541 0.542
ILSTS030 0.587 0.492 0.569
CSRD254 0.729 0.591 0.614
MCM512 0.842 0.691 0.683
MCM218 0.781 0.811 0.811
MCM53 0.714 0.712 0.567
MCMA14 0.699 0.738 0.667
OARAE101 0.677 0.672 0.645
OARHH55 0.665 0.660 0.699
BM143 0.745 0.806 0.769
CSRD2129 0.766 0.709 0.803
MCMA10 0.781 0.744 0.636
CSRD240 0.486 0.403 0.641
MCM152 0.687 0.632 0.558
CSRD247 0.611 0.741 0.815
MCM104 0.764 0.795 0.747
MCM159 0.811 0.827 0.721
MCM38 0.536 0.652 0.725
MCMA36 0.717 0.675 0.528
MCM373 0.789 0.795 0.818
CSRD2148 0.733 0.804 0.696
MCM136 0.685 0.687 0.720
MCMA7 0.778 0.716 0.765
Mean 0.705 0.682 0.686
2.3. Microsatellite genotyping

All studied sheep were genotyped for 28 microsatellite (MST)
markers located on different chromosomes (Table 2). For the MST
markers interrogated by the automated genotyping approach,
analysis was performed using an ABI's 373XL sequencer [11]. A
panel of twenty-eight MST markers from the ovine, caprine and
bovine genome was used to genotype DNA (Table 2). The panel of
MST markers was designed, developed and used as a part of an
automated progeny testing system used in sheep lineage analysis
at the McMaster Laboratory-CSIRO, Prospect-Sydney, Australia [7].
The MST marker panels were grouped in four sets of fluorescent-labeled
primers. In sets one to three, five primer pairs were used in each set for
multiplex amplifications. Set four consisted of seven primer pairs.
Forward and reverse primers in sets one to three were end-labeled with
6-carboxyfluorescein (6-FAM; blue), tetrachloro-6-carboxyfluorescein
(TET; green), or hexachloro-6-carboxyfluorescein (HEX; yellow),
respectively. In set four, primers were labeled with only one [7].
The size standard GX-350-6-carboxytetramethylrhodamine (GX-350
TAMRA; red) was used. Each MST panel was used individually in four
PCR reactions.

PCR reactions of 10 μL were performed in 384-well microlitre PCR
plates. The volume and concentration of PCR reagents used in the
automated genotyping experiments were 3 μL of 10 ng/μL genomic
DNA, 1 μL of 4 mM primer mix, 0.8 μL of 25 mM MgCl2, 1 μL of 2 mM
4dNTP's, 1 μL of 10× Taq polymerase buffer, 0.1 μL of 5 U/μL Taq
polymerase and 3.1 μL of Sterile milliQdH2O. Master mixes for each of
four MST sets were prepared individually. Sample DNA was loaded into
the wells of the PCR plate and then 7 μL of master mix was added. The
plate was then placed onto a PTC-200 programmable Thermal Controller
(MJ Research, Inc.) using the following cycling parameters; initial
denaturation at 95°C for 2 min, denaturation 94°C for 45 s, annealing
57°C for 45 s, extension 72°C for 60 s, and final extension 72°C for
7 min. Initial denaturation and final extension were performed for one
cycle, whereas denaturation, annealing and extension were repeated for
30 cycles. The PCR products for panels one to three were co-loaded in
each well and panel four was loaded in a separate well into the gel.

2.4. Statistical analysis

The CERVUS was also used for parentage analysis. The CERVUS [12]
is designed for large-scale parentage analysis using autosomal and
co-dominant loci. For each offspring tested, the parentage analysis
module calculates likelihood ratio (LOD) scores for each candidate
parent, finds the two most likely parents and calculates the
corresponding Delta score. The final step is to evaluate the confidence
of the Delta score using the appropriate criteria. Different modules
were determined and then utilized to calculate the allele number,
expected (He) and observed (Ho) heterozygosities and polymorphic
information content (PIC), probability of exclusion (PE), Hardy
Weinberg Chi-square statistics and null allele frequency at each locus.
LOD score measures the likelihood that the candidate parent is the
true parent divided by the likelihood that the candidate parent is not
the true parent. For each offspring, a new score was then calculated
called the Delta score (Δ), which is calculated as the difference in LOD
scores between the first and second most likely candidate parents.
Then when using real data in parentage analysis, any most likely
candidate parent with Δ score exceeding the critical Δ score for 95%
confidencewas simulated and awarded parentagewith 95% confidence.

3. Results

3.1. Allele frequency and polymorphism

A total of 519 individuals from the three studied populations
were genotyped for 28 microsatellite loci distributed across the



Table 2
Information about the microsatellite loci used for genotyping analysis.

Marker Chr. Primer (5′–3′) Annealing Temp (°C) MgCl2 (mM) Size (bp) Position (cM) Species

CSRD2108 1 F:CATGGAATCACAAAGAGTTGGACA
R:CCTGGTAAGACAGTCAGTATACAA

55 2 117–127 86.1 Ovine

MCM58 1 F:CTGGGTCTGTATAAGCACGTCTCC
R:CAGAACAATAAACGCTAAACCAGAGC

55 1.5 168–204 112.9 Ovine

MCM147 2 F:TCCGATGTTAGATGACTTTTGTGC
R:AGCTGGTATCTGTGTCTGTCATCC

55 2 177–223 39.8 Ovine

INRA040 2 F:TCAGTCTGGAGGAGAGAAAAC
R:CTCTGCCCTGGGGATGATTG

54 2 205 149.9 Bovine

CSRD2105 2 F:AGTAGTGGAACCCAGATTGAAACC
R:CAGGAATTTTACAGGCACAGAATC

55 2 162–190 160.2 Ovine

OARHH30 2 F:CTCAGTCTCAACTTTGTTCCTCTATAGC
R:GAAAGCTAAGGCTGAACATTGTGCCC

55 2 103–117 167.4 Ovine

ILSTS030 2 F:CTGCAGTTCTGCATATGTGG
R:CTTAGACAACAGGGGTTTGG

55 2 140 180.5 Bovine

CSRD254 2 F:CTTTAGAACTGGGAAGGACAGTGT
R:GAGTGAGACAAGACTAAGCAACTA

55 2 68–106 189.2 Ovine

MCM512 2 F:CTGAAGTGAAGGAAAGGGGACAC
R:GGAATTAGAATATCATTCCTTCATCGTG

55 2 68–96 248.3 Ovine

MCM218 4 F:GATCCTAGCATCAGTCTCCAGATG
R:CACTAAAAGCTTATGAAAGTTCCAGC

– 1.8 140–160 26.5 Ovine

MCM53 6 F:CATGGAGTTGTAGAGTCAGACATGA
R:AGCAAAGGTCATGTCAGGTGT

52 3.5 79–103 29.7 Ovine

MCMA14 6 F:TGTTTCCTCTTCTCCAAATATC
R:GCCCTATTAAGCCAATATACAG

52 1.5 196–216 45.0 Ovine

OARAE101 6 F:TAAGAAATATATTTGAAAAAACTGATCTCCC
R:TTCTTATAGATGCACTCAAGCTAGG

60 3 99–123 49.8 Ovine

OARHH55 6 F:GTTATTCCATATTCTTTCCTCCATCATAAGC
R:CCACACAGAGCAACTAAAACCCAGC

55 2 117–155 54.6 Ovine

BM143 6 F:ACCTGGGAAGCCTCCATATC
R:CTGCAGGCAGATTCTTTATCG

63 1.5 102–128 59.0 Bovine

CSRD129 8 F:CAGCACATTAGTCAGTTTGGCATC
R:ATAAGGAGAATCTGAAGAGCCAAG

55 2 148–170 86.0 Ovine

MCMA10 9 F:GATCTTGTCATCACCAGTTCC
R:CCCTAAACTTCTGGGCCTTC

52 1.5 104–118 35.2 Caprine

CSRD240 9 F:CACATGCACAGCAAAGTGATTCAA
R:AGGACTGTAAAGCACAGGGAATGA

55 2 124–144 80.1 Ovine

MCM152 13 F:CCTAGAAGCCTGGCTAAAATGTG
R:GGAACTCTCATAGTTTCCCACTCC

1.8 128–150 52.1 Ovine

CSRD247 14 F:GGACTTGCCAGAACTCTGCAAT
R:CACTGTGGTTTGTATTAGTCAGG

55 2 220–246 25.5 Ovine

MCM104 14 F:TCAGGATACTTTCTCAGAGAATTTGTG
R:ACCAGTCATTAACTCACAAGGCTG

55 3.5 115–133 95.1 Ovine

MCM159 15 F:GATGGTCTTGTTTCTGAATCATTGA
R:TCAGACAGGACTAAAGCGACTTACA

1.8 120–152 124.4 Ovine

MCM38 18 F:TGGTGAATGGTGCTCTCATACCAG
R:CAGCCAGCAGCCTCTAAAGGAC

55 1.5 131–151 93.4 Ovine

MCMA36 20 F:TTCATTCCTTAAGGGCTCTG
R:CTACTGTCTATGGGGTTGGC

55 0.6 230 18.2 Ovine

MCM373 22 F:GGGTTTACCAGATGTCTGCTTGT
R:TATTTGTCCAGCTGGTTGCAG

4.5 102–128 82.9 Ovine

CSRD2148 23 F:GAGAAGTGGTCAACAGAGGATGAG
R:TACAGAGAAGCACAAAGAGATGGG

0.5 300 31.1 Ovine

MCM136 23 F:GCACACACATACACAGAGATGCG
R:AAAGAGGAAAGGGTTATGTCTGGA

55 2 140–170 65.6 Ovine

MCMA7 25 F:ATCAGTCCTTCACAAGGTTG
R:CCTGTTGCTATGTCATGTTG

52 1.5 240–268 31.0 Bovine
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sheep genome (Table 1). The average number of alleles per flock was
9.93, 8.39 and 7.64 in the CR, LR and HR populations, respectively
(Table 1). The LR and HR populations showed slightly lower
numbers of alleles per locus, which probably reflects the closed
breeding structure of the flocks. The number of alleles per MST
locus ranged from 18 in LR to 4 in LR and HR and the allele
size ranged from 79–103 bp (MCM159) to 291–307 bp (MCMA36)
(not tabulated data). Levels of He and Ho at the 28 loci per flock
are shown in Table 1. These values were high and similar in
the populations, except a few cases. PIC was also high in all loci
across the three flocks. These results were quite expected for
microsatellite loci, which have demonstrated high polymorphism
in all species studied so far.
3.2. Parentage analysis

Correctness of the genotyping and pedigree data was critical for
any genetic investigations, particularly the ones using genetic
related-pedigree information. It is well know that errors in the
pedigree records are quite common and misidentification of genotypes
is also possible [13]. Accordingly, CERVUS program was used to infer
parental-offspring assignment in the three sheep populations using MST
genotypic data. CERVUS is a paternity/maternity allocation program
which uses likelihood ratios to assign statistical confidence of parentage
to a given set of parents. CERVUS uses three different modules in which
different simulated and real parameters are estimated in order to
perform the parentage assignment.



Table 4
Parentage parameters used in CERVUS parentage analysis, following allele frequency
estimations and simulations.

Parameter Value

Percentage of candidate parents typed 100%
Percentage of loci typed 100%
Rate of mismatching error used 0, 1 and 10%
Number of tests performed 10,000
Strict confidence level of parentage assignment 95%
Relaxed confidence level of parentage assignment 80%

Table 5
An example of parentage analysis (adapted from LR parentage test).

Parentage analysis parameter Offspring ID

340 313 489 319

Offspring (O) loci typed 27 27 26 28
Known parent (KP) ID 260 267 269 283
KP loci type 28 28 28 28
KP class Typed Typed Typed Typed
O-KP loci comparable 27 27 26 28
O-KP loci mismatching. 0 0 0 0
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In the first module, CERVUS provided genetic diversity statistics
for each of the studied loci about a PE. PE is the average probability
of excluding a single unrelated candidate parent from parentage
of a given offspring at one or more loci, assuming that no typing
errors occur and thus it is a good predictor of probability of correct
parentage assignment. The results showed that the total PE for the
first parent from parentage of an arbitrary offspring, given only the
genotype of the offspring at the twenty-eight MST genotypes, was
around 0.9999. The total PE for the second parent, given both the
genotypes of the offspring and the first parent was 1.00 (Table 3).
Such high probabilities were a good indication that the parentage
assignment using the twenty-eight MST markers was done correctly.

Simulation, the secondmodule of the program, simulated parentage
analysis for different values of the parameters, based on allele frequency
estimates. Assuming neither parent for an offspring was known,
the simulation module estimated the Δ parameter which was the
statistics used to assess the reliability of parentage assignment. The
simulated parameters (Table 4) were then used in the third module,
parentage assignment analysis, in order to estimate these parameters.

The parentage assignment calculated the critical differences
(critical Δ) in likelihood LOD of the first most likely and second
most likely parent (ram or ewe). An example of parentage assignment
adapted from LR parentage test analysis can be found in Table 5.
In Table 5, four offsprings were matched with their candidate parents
when one parent is known. The higher candidate LOD score parent is
considered putative parent.

3.3. Success rate of parentage analysis

CERVUS estimated the success rate of the assignment at both
confidence levels of 95% and 80%. At the beginning of the analysis,
genotyping errors were identified. In only fourteen cases of the
total number of genotyping (13,235), discrepancies were found in
1 locus, and these were most likely caused by genotyping scoring
errors or mutation events. These very rare discrepancies of a
percentage of b1% in no way significantly affected confidence of
the pedigree reconstruction and these fourteen genotypes were not
utilized in further analysis. Checking these cases by repeating
genotyping of alleles that have not been assigned to any of the
parents, two mutations were found in each of LR and HR and none
in the CR.

Excluding the fourteen cases of unresolved genotypes and mutations,
the success rate of progeny test was as in Table 3. So the success rate
at strict confidence level of the assignment was 100% for the three
populations at both confidence levels (Table 6). These results were
observed on the assumption that there were no genotyping errors
(error rate = 0) and they are equivalent to the simulation results.

3.4. The probability of exclusion

The PE increased sharply with extra markers genotyped (Fig. 1).
As an example, using five markers with an average of seven alleles
each gave PE close to 98.30%, while with an average of ten alleles gave
PE close to 99.60%. Using six markers with an average of seven alleles
gave PE close to 98.80%, whereas an average of ten alleles gave PE
close to 99.82%. Fig. 1 shows the relationship between PE and the
number of loci. The major finding is that the increment in PE becomes
Table 3
Total exclusion probability using twenty eight microsatellite genotypes.

No. of parents' genotypes Population

CR LR HR

One parent 0.999994 0.999996 0.999998
Both parents 1.000000 1.000000 1.000000
insignificant after using more than eight MST markers, in which PE is
close to 99.60%. These eight markers had an average of PIC around 0.65.

It is important to emphasize that twenty-eight genotyped loci with
an average of higher than eight alleles in each locus increased PE in
the studied populations up to the possible maximum 1. It means that
CERVUS was able to identify all rams, ewes and their offspring with
very high precision and any other allocations of parents or offspring
are extremely unlikely.

3.5. Pedigree recording errors

The results of DNA-based parentage tests revealed that the level of
error rate in pedigree records was significant; 7.79 and 8.70% for ewes
and 5.19 and 5.43% for rams in the LR and HR populations. The error
rate was also 4.04% for rams in CR population (Table 7). Results of
parentage testing rather than pedigree records were used for further
analysis in the three populations.

Regardless of management practices employed to record pedigrees,
all populations had lambs which had incorrect pedigree information
for both ewe and ram wherever pedigree records were available.
In addition, the ewe pedigree errors were more common than the
ram pedigree errors in the experimental populations. Out of the
total lambs in both populations, 7.69% (Table 7) had incorrect ewe
pedigrees. The percentage of the errors in the ewe pedigree was
slightly higher in HR than LR. Of all lambs genotyped, 4.85% had
incorrect ram pedigree (Table 7).

4. Discussion

Obviously, accuracy of pedigree and genotyping data is critical
for any type of genetic investigation, in particular the ones that
are pedigree related. For example, linkage disequilibrium analysis
and segregation distortion analysis are heavily based on pedigree
information, and the more accurate pedigree information and
genotypes the more reliable the results. Only the 100% accurate
Probability of non-exclusion 5.51E-11 1.44E-10 1.33E-09 1.97E-09
Candidate parent (CP) ID 160 554 673 659
CP loci typed 27 28 26 28
O-CP loci comparable 26 27 25 28
O-CP loci mismatching. 0 0 0 0
O-KP-CP loci comparable 26 27 25 28
O-KP-CP loci mismatching 0 0 0 0
LOD 19.6 22.5 17.9 19.4
Δ 19.6 22.5 17.9 19.4



Table 6
Success rate of parentage assignment based on all twenty-eight loci for both 95 and 80%
confidence levels.

Population Error rate Success rate

Strict (95%) Released (80%) Unsolved

CR 0% 100% (100%)a 100% (100%) 0% (0%)
LR 0% 100% (100%) 100% (100%) 0% (0%)
HR 0% 100% (100%) 100% (100%) 0% (0%)

a Values of expected assignment in parenthesis are those obtained from simulations
based on critical Δ.
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DNA-based pedigree is used to reconstruct maternal and paternal
haplotypes as well as determine maternal and paternal alleles.

Error rate in ewe pedigree recording (7.69%) was higher than for
ram pedigree (4.85%) in both selected populations. This might be due
to ewes failing to keep their litter together, lamb desertion, lamb
separation also lamb stealing [14], whereas the error rates in ram
pedigree were found to be higher in the HR population than the LR
and CR populations. This is mainly due to incorrect information
collected on the basis of lambing the ewes that were seen in the
paddock with the putative ram. These results are close to those found
by Crawford et al. [1] in five sheep populations where the pedigree
error ranged from 0.31 to 5%. Moreover, Barnett [3] found that the
overall proportion of Australian Merino lambs with incorrect ewe
pedigrees was about 10%, whereas it was 3.9% in ram pedigrees. The
significant pedigree record errors seem to be a common problem
in sheep populations. The consequent lack of accurate pedigree
information will reduce the genetic progress of the populations
whenever these records are used.

The only reliable solution to this problem is to provide accurate
pedigree information using DNA-based parentage analysis. The results
of DNA-based parentage analysis showed that successful parentage
assignment for offspring using the twenty-eight MST loci, given the
genotypes of the offspring and the parents, was 100% (Table 7).
However, the minimum number of MST markers required to make
parentage assignment is approximately eight MST markers with an
average of eight to nine alleles per MST marker (average PIC = 0.650)
which will give PE close to 99.60%. Thus eight such markers are
sufficient for successful parentage analysis. A similar finding was
reported for Australian Merino sheep by Barnett [3]. However some
MST markers with high PIC are more useful within a panel for
pedigree analysis in Merino sheep than others. This is mainly because
Merino sheep populations are not homogenous in terms of PIC of MST
markers. Therefore, a panel of fewer MST markers and high PIC would
give the same result as that of more markers but low PIC. Indeed, this
reduces the cost of MST genotyping and thus reduces the cost of DNA
based parentage assignment. Similar validation and power of MST
Fig. 1. The probability of exclusion as a function of numbers of microsatellit
panel were reported for bison and cattle [15], domestic horse [16],
thoroughbred horses [17], goats [18,19], dairy breeds [20], beef cattle
[21] and sheep [22,23].

The 100% accurate pedigree information using DNA-based parentage
analysis is recommended in Merino sheep breeding programs for
better estimates of EBVs and increasing genetic progress. Many
sheep breeders indicated the importance of parentage testing and
effect of misidentification on the estimation of breeding value
[22,24,25,26]. Nevertheless, there is some debate over whether
DNA-based pedigree is cost-effective in sheep. In this study such an
analysis was not performed because it was not one of the project
targets. However, it has been reported that DNA fingerprinting
using MST markers could be cost effective for Australian Merino
breeders if full pedigrees had been used in estimating EBVs by the
BLUP procedure [3]. In addition, a review on recently common use
of MST marker and SNP marker panels show affordability by
researchers and farmers with future breeding perspectives
[24,25,27,28,29]. However, SNPs, in terms of genetic information,
are biallelic markers considered as a step backwards. The SNPs
promising advantages are their greater abundance in the genome.
On the other hand, 2–3 SNPs per one MST marker were needed to
obtain equivalent cumulative exclusion power values. Generally 24
SNPs were equivalent to the 12 MST markers for cattle paternity
recommended by International Society for Animal Genetics [28].
A typical microsatellite parentage test can be affordable for USD
25–35 per sheep. SNP of 100 markers tests, on the other hand, can
be purchased for USD 15–20. Recently, for many reasons, SNPs
have become the focus of efforts to improve sheep parentage testing
[29]. However, SNP genotyping technologies are not available and
affordable in each country and for each farmer.

5. Conclusion

Using MST markers was the only reliable solution to provide
accurate pedigree information and resolve the common problem of
significant error in pedigree records in Merino sheep populations.
A panel of eight MST markers with an average of PIC equal to 0.65 or
more would be sufficient to make accurate and successful DNA-based
parentage analysis. In this work, twenty-eight MST loci were used and
they were obviously sufficient for providing 100% accurate pedigree
and genotyping data. These data were used for study population
genetic parameters such as recombination, haplotyping, LD and SD,
which are heavily based on pedigree information.

Nevertheless, there is some debate over whether DNA-based
pedigree is cost effective in Merino sheep. It was reported that DNA
fingerprinting using MST markers could be cost effective for Australian
Merino breeders when full pedigree has been used in estimation of
EBVs using Best Linear Unbiased Predication (BLUP) procedure [3].
e loci with an average of PIC = 0.65 for the three studied sheep flocks.



Table 7
Number and percentage of lambs with incorrect ewe and ram pedigrees in three populations.

Lambs
genotyped

Number of lambs with incorrect
ewe pedigree

Percentage of lambs with incorrect ewe
pedigree (%)

Number of lambs with incorrect
ram pedigree

Percentage of lambs with incorrect
ram pedigree (%)

CR 99 NAa NA 4 4.04
LR 77 6 7.79 4 5.19
HR 92 8 8.70 5 5.43
Total 268 14 7.69 13 4.85

a The pedigree data records for ewes were not available for CR population.
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