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ABSTRACT

Background: Reduced-representation sequencing technology is widely used in genotyping for its economical
and efficient features. A popular way to construct the reduced-representation sequencing libraries is to
digest the genomic DNA with restriction enzymes. A key factor of this method is to determine the
restriction enzyme(s). But there are few computer programs which can evaluate the usability of
restriction enzymes in reduced-representation sequencing. SimRAD is an R package which can simulate
the digestion of DNA sequence by restriction enzymes and return enzyme loci number as well as
fragment number. But for linkage mapping analysis, enzyme loci distribution is also an important factor
to evaluate the enzyme. For phylogenetic studies, comparison of the enzyme performance across multiple
genomes is important. It is strongly needed to develop a simulation tool to implement these functions.
Results: Here, we introduce a Perl module named RestrictionDigest with more functions and improved
performance. It can analyze multiple genomes at one run and generate concise comparison of enzyme
performance across the genomes. It can simulate single-enzyme digestion, double-enzyme digestion and
size selection process and generate comprehensive information of the simulation including enzyme loci
number, fragment number, sequences of the fragments, positions of restriction sites on the genome, the
coverage of digested fragments on different genome regions and detailed fragment length distribution.
Conclusions: RestrictionDigest is an easy-to-use Perl module with flexible parameter settings. With the help
of the information produced by the module, researchers can easily determine the most appropriate
enzymes to construct the reduced-representation libraries to meet their experimental requirements.

© 2016 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

species. All these methods utilize restriction endonucleases to digest
genomic DNA; thus, selecting the appropriate enzyme(s) is

With the development of next generation sequencing (NGS),
reduced-representation sequencing technology is widely used in
single nucleotide polymorphism (SNP) genotyping [1], linkage/
association mapping, and population analysis in various species [2].
Restriction site-associated DNA sequencing (RAD) [3], genotyping by
sequencing (GBS) [4] and subsequent method variations [5,6,7,8]
based on them are popular approaches for reduced-representation
sequencing, and have been widely used in both model and non-model
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fundamental for successfully constructing sequencing libraries.

Ideal digestion of the whole genome generates DNA fragments evenly
distributed among the genome and do not fall in repeat-sequence-rich
regions [3]. For linkage mapping, evenly distributed markers on the
whole genome are critical not only for sufficient genome coverage but
also for accurate estimation of the genetic distance between markers
[9]. Massive repeat sequences in a library can lead to considerable
waste of available reads for SNP genotyping. Moreover, a high ratio of
repeat sequences can seriously decrease the sequencing quality of the
whole library because of nucleotide composition imbalances [10,11,12].
The appropriate enzyme(s) should satisfy these two principle
requirements. The total number of restriction fragments from genomic
digestions is another important factor to be considered besides the two
principle requirements. Generally, SNPs distribute evenly in the whole
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genome at a specific frequency according to the heterozygosity of the
species [13]. The number of restriction fragments in the library could
serve as a good index of the number of SNPs to be genotyped. In
addition, the number of restriction fragments in the library allows
researchers to estimate the proper sequencing depth for each sample
when designing a library-pooling strategy.

Hence, simulating digestions before the library construction is
necessary for the researchers to both choose the proper enzyme(s)
and determine the appropriate sequencing depth. A few online tools
such as NEBcutter [14] by New England Biolabs and Restriction Digest
of the Sequence Manipulation Suite, along with some standalone
software such as Emboss [15] and BioEdit [16], can generate
restriction enzyme site maps of DNA sequences. However, these tools
neither generate results which can meet the requirement for
evaluating whether an enzyme is suitable for library construction nor
process a whole reference genome with hundreds of millions of base
pairs. Olivier Lepais et al. [17] designed an R package named SimRAD
which can simulate the DNA sequence digestion by one enzyme or
enzyme combination and generate corresponding enzyme loci
number as well as digested fragment number. SImRAD can also
simulate the fragment size selection process which generates
expected fragment number within a specified size range. The
expected fragment number can be used to estimate the tags number
being genotyped.

It is crucially important to evaluate the enzyme loci distribution on
the reference genome besides of total enzyme loci number in most
reduced-representation sequencing applications. For example, in
linkage mapping studies, the distribution of genetic markers affects the
estimation accuracy of the genetic distance between markers. For
phylogenetic studies in which restriction endonucleases are used to
detect multiple band patterns of DNA repeats [18], it is important to
evaluate the performance of an enzyme or enzyme combination across
multiple genomes. As these demands are beyond the functions of
SimRAD, we designed a Perl module named RestrictionDigest that can
meet these needs with improved performance. First, RestrictionDigest
can simulate the digestion of multiple genomes and compare enzyme
loci numbers as well as fragment length distributions across the
genomes at one run. Second, in addition to the enzyme loci numbers,
fragment numbers and their sequences which SimRAD can provide,
RestrictionDigest can also provide positions of these fragments on the
reference genome, fragment numbers within different length ranges,
coverages of these fragments on different genome regions if GFF file is
provided, and expected SNP number on the fragments being
genotyped if an SNP position file which stores the SNP position
information on the reference is provided. Third, the input and output
functions of RestrictionDigest are simpler which makes the use of the
module easier and more efficient. Multiple sequences can be saved in
one file and passed to RestricitonDigest and every sequence will be
analyzed individually at one run. RestrictionDigest can accept a
degenerated recognition site directly. RestrictionDigest outputs
simulation information into result files which can clearly reveal the
simulation result. In general, RestrictionDigest can generate more
comprehensive information of the simulated digestions; the
information help researchers design finer and more applicable
experimental schemes for reduced-representation sequencing.

2. Materials and methods
2.1. Overview of the design process

RestrictionDigest can not only analyze one reference genome
(RestricitonDigest::Singleltem) and generate detailed information of
the simulation but also analyze more than one reference genomes at
one run (RestrictionDigest::Multipleltems) and generate concise
comparisons across these genomes. Both RestrictionDigest::Singleltem
and RestricitonDigest::Multipleltems can conduct both single-enzyme

digestion and double-enzyme digestion. The design process is listed
below.

Single-enzyme digestion produces one kind of restriction fragments
which are flanked by identical enzyme sticky ends. For single digest
RAD-seq [3], the digested DNA fragments are sheared by sonication
and size selected usually by gel electrophoresis; then only those with
an enzyme cut site on one end are sequenced. It is the total number of
enzyme cut sites in the genome that matters for single digest
RAD-seq. While for single digest GBS-seq, it is possible to further
reduce the targeted fragment number via size selection which means
it is necessary to know digested fragment numbers within different
length ranges.

Double-enzyme digestion produces three kinds of restriction
fragments. For the first kind of fragments, one end of the fragments is
front-enzyme sticky end and the other end is behind-enzyme sticky
end. For the second kind of fragments, both ends of the fragments are
front-enzyme sticky ends. For the third kind of fragments, both ends
of the fragments are behind-enzyme sticky ends. For ddRAD [5] and
double-enzyme GBS [4], fragments flanked by two different enzyme
sticky ends are collected and sequenced. While for RESTseq [8],
fragments flanked by identical enzyme sticky ends are collected and
sequenced. It is necessary to know the numbers of these three kinds
of fragments. As size selection is usually used in ddRAD,
double-enzyme GBS and RESTseq, it is also necessary to know the
length distribution of all these three kinds of fragments.

Upon their introduction, both RAD and GBS used the
single-enzyme digest strategy. However, double-enzyme GBS and
double-digest RAD are gaining popularity for their better
performance and flexibility in enzyme selection. The selection
between single-enzyme digestion and double-enzyme digestion
depends on the purpose of the experiment and the genomic
features of the species being evaluated. For both digestions,
RestrictionDigest executes the simulation in a similar way.

RestrictionDigest can recognize most type Il restriction enzymes
whose cleavage position is located within the enzyme recognition site
sequence. There are scores of frequently used enzymes embedded in
the module. It is also simple for users to temporarily add more
enzymes and their recognition site sequences to the module.

RestrictionDigest::Singleltem can execute two types of
functions: basic function and extended function. In the contrary,
RestrictionDigest::Multipleltems only executes the basic function.
The basic function is the reference genome digesting process. When
executing the basic function, the module scans the reference
sequences, finds recognition sites of the selected enzyme(s) and
returns the number(s) of the enzyme(s) recognition sites, virtually
cuts at these recognition sites, collects restriction fragments with
sticky ends of the selected enzyme(s), outputs sequences of the
restriction fragments and their positions on the reference to result
files (only for RestrictionDigest::Singleltem), and generates summary
information of the restriction fragments. It is unnecessary for
RestrictionDigest::Multipleltems to output sequences and positions of
the restriction fragments. If the sequences and positions are needed,
RestrictionDigest::Singleltem can be used to analyze each genome
individually.

During the digestion simulation, RestrictionDigest can simulate size
selection process of library construction; the size selection process can
be described as dispersing restriction fragments in the agarose gel
through electrophoresis and then selecting those falling within a
certain length range by cutting the gel. Before the size-selection
simulation, RestrictionDigest collects all restriction fragments. During
the size-selection simulation, RestrictionDigest collects restriction
fragments whose lengths falling within a certain range. The default
value of the certain length range is from 201 to 500-bp and can be
easily reset by users. RestrictionDigest simultaneously simulates
digestions with and without size selection process. It digests
chromosomes (or scaffolds) one by one and returns coverages of all
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restriction fragments and restriction fragments in range on every
chromosome (or scaffold) separately. After scanning all chromosomes
(or scaffolds), RestrictionDigest returns coverages of all restriction
fragments and restriction fragments in range on the whole reference
genome separately. The coverage calculation function is designed to
help researchers to evaluate the coverage level of restriction
fragments on the reference genome in a general view.

RestrictionDigest also generates another kind of summary
information: distribution of all restriction fragment lengths, which
provides the proportions of restriction fragments within different
length ranges. The distribution also provides exact numbers of
restriction fragments whose lengths are falling within different size
ranges. The resolution of the distribution is shaped by three
parameters: two boundary parameters and one splitting parameter.
One of the two boundary parameters defines a small value of
restriction fragment length; the default value of this small value is
100-bp. The other of the two boundary parameters defines a big
value of restriction fragment length; the default value of this big
value is 1000-bp. The region between the two boundary length
values is frequently used to select restriction fragments during the
size selection process. The splitting parameter defines a step length
to split the region between the two boundary length values into
small length bins; these small length bins have same length which
equals the step length. The default value of this splitting parameter
is 50-bp. By referring the exact numbers of restriction fragments
whose lengths are falling within these small bins, researchers can
determine the cutting region during the size selection process.
Results of the basic function provide the researchers essential
information to evaluate the enzyme usability for constructing
reduced-representation libraries.

Besides the essential information, RestrictionDigest::Singleltem
can provide more concrete information about the restriction
fragments by executing the extended function. The extended
function depends on the results of the basic function. It also needs
two supplementary files of the reference genome: the general
feature format (GFF) file and the SNP position file. By analyzing the
GFF file, RestrictionDigest::Singleltem can calculate coverage of the
digested restriction fragments on different genome regions. The
genome regions recognized by the module include exon regions,
intron regions, gene regions, and intergenic regions. A desirable
digestion would generate restriction fragments that cover different
genome regions equivalently. By analyzing the SNP position file,
RestrictionDigest::Singleltem can estimate the SNP number located
on the restriction fragments. RestrictionDigest takes the actual
needs of sequencing process into account. NGS techniques, such as
Solexa, produce short and discontinuous pair-end reads like
2 x 100-bp and 2 x 150-bp, as well as short single-end reads like
75-bp and 100-bp [19]. As the module can simulate both single-end
and double-end sequencing, it provides a parameter to make a choice
between these two sequencing types. RestrictionDigest also provides a
parameter to set the read length; it counts SNPs according to the
selected read length and only counts the SNPs located within the read
length region of the restriction fragments. RestrictionDigest returns
estimated SNP numbers of digestions with and without size selection
process separately. The estimated SNP numbers help the researchers
design precise experimental schemes. Results of the extended
function provide the researchers useful supplementary information to
evaluate the enzyme usability.

2.2. Functions

RestrictionDigest was developed in Perl 5 and packaged into a
module. The module can be downloaded and installed; after the
installation, RestrictionDigest can be used in Perl scripts. A
supplementary file shows the functions of RestrictionDigest
(Supplementary file 1).

2.3. Script examples

To illustrate the usage of RestrictionDigest, Perl script examples of
how to analyze one reference genome and multiple reference
genomes are listed below.

The Perl script of simulating double-enzyme digestion of one
reference genome can be written like this:

1) use RestrictionDigest;

2) my $double_digest=RestrictionDigest::Singleltem::Double->new();

3) $double_digest->add_ref(-reference =>‘path to the reference
file’);

4) $double_digest->add_enzyme_pair(-front_enzyme
-behind_enzyme =>‘HinfT’);

5) $double_digest->change_range(-start =>301,-end =>500);

=>‘EcoRI’,

6) $double_digest->change_lengths_distribution_parameters(-front
=>200,-behind =>800,-step =>25);
7) $double_digest->add_output_dir(-output_dir=>* path to the

output directory’);
8) $double_digest->double_digest();
9) $double_digest->add_SNPs(-SNPs =>‘path to the SNPs file’);
10) $double_digest->_SNPs_at_fragments(-sequence_type =>‘125SE’,
-sequence_end =>‘front_enzyme’);
11) $double_digest->add_gff(-gff =>‘path to the GFF file);
12) $double_digest->frags_in_range_coverage();

Line 1 means to use the RestrictionDigest module in this script. Line
2 means to create an object of RestrictionDigest::Singleltem::Double
that can execute the double-enzyme digestion on one reference
genome.

Line 3 means to add a reference file to the object via the function
add_ref. The parameter of this function is a key-value pair. The key is
-reference and the value is ‘path to the reference file’. The reference
file must be in FASTA format.

Line 4 means to select a pair of enzymes to digest the reference.
Parameters of function add_enzyme_pair are two key-value pairs.
The first parameter defines a front enzyme and the second
parameter defines a behind enzyme. The front enzyme
corresponds to Adaptor 1 and the behind enzyme corresponds to
Adaptor 2. The values of these two parameters are case-insensitive
names of the enzymes. RestrictionDigest has an enzyme reservoir,
which contains many restriction enzymes and their recognition
sites. New enzymes can be added to the reservoir temporarily
through the function new_enzyme. Here is an example about how
to use this function: $double_digest->new_enzyme(-enzyme_
name=>'Ncil’, -recognition_site =>‘CC|SGG’);. This function has
two parameters: -enzyme_name and -recognition_site. The value
of -recognition_site must contain a ‘|’ character that indicates the
cleavage position of this enzyme. If the function new_enzyme is
used in the script, it must be used before the function
add_enzyme_pair is used.

Line 5 means to set a length range corresponding to the size
selection process via the function change_range. The default range is
201-500-bp. In this example, the length range is set as 301-500-bp.

Line 6 means to set parameters shaping the lengths distribution via
the function change_lengths_distribution_parameters. This function
has three parameters: front and behind define the two boundary
length values, and step defines the step length.

Line 7 means to add a directory via the function add_output_dir
where results of the digestion will be output. All results are in plain
text format. This function is obligatory because it has no default value.
Line 8 means to execute the double digestion; the digesting process is
the basic function of RestrictionDigest.

Lines 9 to 12 mean to execute the extended function of
RestrictionDigest::Singleltem. Line 9 means to add an SNP position file
to the object. The SNP position file must contain three columns split
by white space. The first column contains chromosome names on
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which SNPs are located. The second column contains the coordinates of
these SNPs on the corresponding chromosomes. The third column
contains types of the SNPs, like Y, S, and W.

Line 10 means to count SNPs located on restriction fragments via
the function count_SNPs_at_fragments. This function aims to count
SNPs of both digestions with and without size selection process. It
can recognize two sequencing types: pair-end sequencing and
single-end sequencing. The sequencing type used is determined by
the parameter -sequence_type. The parameter -sequence_type
defines not only the sequencing type but also the read length. The
default value of this parameter is ‘100PE’. ‘100PE’ means the
sequencing type is pair-end sequencing and the read length is
2 x 100-bp. If the value of the parameter -sequence_type is set as
‘100SE’, then the sequencing type is single-end sequencing and the
read length is 1 x 100-bp. RestrictionDigest counts SNPs according
to the value of -sequence_type. Only SNPs located at read length
parts of restriction fragments are counted. If the sequencing type is
single-end sequencing, a second parameter -sequence_end is
useful. The default value of -sequence_end is ‘front_enzyme,’
meaning that the SNPs located at the front-enzyme cleaved
terminals of restriction fragments will be counted. It can be altered
to ‘behind_enzyme’. The ‘front_enzyme’ and ‘behind_enzyme’ here
correspond to parameters of the function add_enzyme_pair. The
SNP counting function proceeds quickly. The exact time it will cost
depends on both the number of restriction fragments and the SNP
number in the SNP position file; for most cases, it will be done
within 1 h.

Line 11 means to add a GFF file to the object. Line 12 means to
calculate coverages of the fragments on different genome regions.
RestrictionDigest can recognize four regions: exon regions, intron
regions, gene regions, and intergenic regions. The function
frags_in_range_coverage calculates coverages of restriction
fragments within the specific length range. In contrast, the
function all_frags_coverage calculates coverages of all restriction
fragments.

Similarly, the Perl script of simulating single-enzyme digestion of
one reference genome can be written like this:

use RestrictionDigest;

1)
2) my $single_digest=RestrictionDigest::Singleltem::Single->new();
3) $single_digest->add_ref(-reference=>‘path to the reference file’);
4) $single_digest->add_single_enzyme(-enzyme =>‘EcoRI’);
5) $single_digest->change_range(-start =>301,-end =>500);
6) $single_digest->change_lengths_distribution_parameters(-front
=>200,-behind =>800,-step =>25);
7) $single_digest->add_output_dir(-output_dir=>‘path to the output
directory’);
8) $single_digest->single_digest();
9) $single_digest->add_SNPs(-SNPs =>‘ path to the SNPs file’);
10) $single_digest->count_SNPs_at_fragments(-sequence_type
=>'150SE’);
11) $single_digest->add_gff(-gff =>‘path to the GFF file’);
12) $single_digest->frags_in_range_coverage();

The Perl script of single-enzyme digestion is similar to that of
double-enzyme digestion, except for lines 2, 4, 8, and 10. Line 2 means
to create an object that will execute single-enzyme digestion on one
reference via RestrictionDigest::Singleltem::Single. Line 4 means to
select a single enzyme to digest the reference genome. Line 8 means
to execute the single-enzyme digestion. Line 10 means the sequencing
type is single-end sequencing and the read length is 1 x 150-bp.
Single-enzyme digestion generates restriction fragments with
identical terminals. In the single-end sequencing type, two terminals
of restriction fragments are randomly sequenced; the SNP number
calculated by RestrictionDigest is the mean value of the sum of both
ends SNP numbers. In the single-enzyme digestion, RestrictionDigest

processes the pair-end sequencing type in the same way as in the
double-enzyme digestion.

The Perl script of simulating double-enzyme digestions of multiple
reference genomes can be written like this:

1) use RestrictionDigest;

2) my $multiple_double_digest=RestrictionDigest::Multipleltems::
Double->new();

3) $multiple_double_digest->add_refs(-ref1 =>‘path to reference 1
file’, -ref2 =>‘path to reference 2 file'...);

4) $multiple_double_digest->add_enzyme_pair(-front_enzyme=
>‘EcoRI’, -behind_enzyme =>‘HinfT’);

5) $multiple_double_digest->change_lengths_distribution_
parameters(-front =>200, -behind =>800, -step =>25);

6) $multiple_double_digest->add_output_dir (-output_dir =>‘path to
the output directory’);

7) $multiple_double_digest->digests_and_compare();

The functions of double-enzyme digestion and single-enzyme
digestion of RestrictionDigest::Multipleltems are similar with the
functions of double-enzyme digestion and single-enzyme digestion of
RestrictionDigest::Singleltem separately except for the add_refs
function and the digests_and_compare function. The add_refs function
can add multiple reference genomes to the module. The parameters of
add_refs are several key-value pairs. The keys of the parameters are in
the -refX form where X are integers indicating the order of the
reference genomes. The values of the parameters are the full paths of
the reference genome files. At least two reference genomes are
needed to be provided to run RestrictionDigest::Multipleltems. The
simulation execution function is digests_and_compare rather than
double_digest or single_digest of RestrictionDigest::Singleltem.

The naming scheme of result files of RestrictionDigest and their
explanations are contained in a supplementary file (Supplementary
file 2).

3. Results and discussion

To show the performance of RestrictionDigest, we describe here two
example uses of it: single-enzyme digestion and double-enzyme
digestion of RestrictionDigest::Singleltem.

3.1. Case study A

We simulated the single digest GBS-seq with size selection process
of corn (Zea mays) reference genome B73_RefGen_v3 (GenBank
accession no. GCA_000005005.5) [20] with RestrictionDigest::
Singleltem::Single. In the test, we only executed the basic function
of RestrictionDigest::Singleltem::Single. The enzymes used are
ApeKI(G|CWGC), Bfal(C|TAG), EcoRI(G|AATTC) and MspI(C|CGG).
Length range of size selection process was set as 301-bp to 500-bp
via the function change_range. Parameters of other functions took
their default values.

Based on the summary information of these digestions, numbers of
restriction fragments of both digestions with and without size
selection process are illustrated in Fig. 1; distributions of all restriction
fragment lengths are illustrated in Fig. 2.

In these single-enzyme digestions, we conclude from the summary
information that different enzymes produce variable numbers of
restriction fragments. The number of restriction fragments produced
by an enzyme is determined by its recognition site sequence feature.
The recognition site sequence feature includes two essential parts:
base-pair number and GC ratio of the recognition site sequence.
Enzymes with shorter recognition site sequences produce more
restriction fragments. With the same length of recognition site
sequence, enzyme whose recognition site sequence GC ratio is closer
to the GC ratio of the whole reference genome produces more
restriction fragments. Bfal produces the most restriction fragments
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Fig. 1. Numbers of restriction fragments of digestions with and without size selection
process of case study A. The numbers above the bars are the exact numbers of
restriction fragments.

among the four enzymes while Mspl produces the second most
restriction fragments. Both of them have a recognition site sequence
of four bases. But the GC ratio of Bfal recognition site sequence is
closer to the GC ratio of the reference genome: the GC ratio of
B73_RefGen_v3 is about 46.8%; the GC ratio of Mspl recognition site
sequence is 100% while the GC ratio of Bfal recognition site sequence
is 50%. EcoRI has a recognition site of six bases and produces the
minimum restriction fragments among the four enzymes. ApeKI has a
degenerate base in its five-base recognition site and produces an
intermediate number of restriction fragments.

Different enzymes also generate different distributions of restriction
fragment lengths. Bfal, Mspl, and ApeKI have high ratios of restriction
fragments whose lengths are shorter than 100-bp and low ratios of
restriction fragments whose lengths are longer than 1000-bp. In
contrast, EcoRI has a low ratio of restriction fragments whose lengths
are shorter than 100-bp and a high ratio of restriction fragments
whose lengths are longer than 1000-bp. Higher ratio of short
restriction fragments often comes with more restriction fragments
while higher ratio of long restriction fragments often comes with less
restriction fragments produced by the digestion.

Length range of the size selection process of this example is 301-bp
to 500-bp. Within this length range, Bfal generates 1,073,438 restriction
fragments while EcoRI generates 25,552 restriction fragments. These
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Enzyme pairs used in case study B.

EcoRI + ApeKI
EcoRI + Mspl
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two levels of restriction fragments can meet different experimental
needs: some experiments need thousands of markers while some
other experiments need millions of markers. The number of restriction
fragments and the lengths distribution help researchers to choose the
appropriate restriction enzyme according to their experimental
requirements.

3.2. Case study B

We simulated the ddRAD-seq with size selection process of pacific
oyster (Crassostrea gigas) reference genome oyster_v9 (GenBank
accession no. GCA_000297895.1) [21] with RestrictionDigest::
Singleltem::Double. The enzymes used are listed in Table 1. Length
range of size selection process was set as 301-bp to 500-bp via the
function change_range. Parameters of other functions took their
default values.

For ddRAD-seq, only fragments flanked by different sticky ends are
collected and sequenced. Based on the summary information of these
digestions, numbers of these restriction fragments of both digestions
with and without size selection process are illustrated in Fig. 3;
distributions of all restriction fragment lengths are illustrated in Fig. 4.

We conclude from the summary information of these
double-enzyme digestions that numbers of restriction fragments of
these digestions are determined by the feature of restriction enzymes.
The enzyme combination of two enzymes with short recognition site
sequences produces more restriction fragments than that of two
enzymes with long recognition site sequences. Bfal and Mspl both
have a recognition site sequence of four bases; the combination of
them produces 489,437 restriction fragments in total. In contrast,
EcoRI has a recognition site sequence of six bases and ApeKI has a
recognition site sequence of five bases; the combination of them
produces only 202,401 restriction fragments in total. The distributions
of all restriction fragments of double-enzyme digestion has the same
characteristic as that of single-enzyme digestion: the enzyme
combination producing a higher ratio of short restriction fragments
tends to generate more restriction fragments while the enzyme
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Fig. 2. Distributions of restriction fragment lengths of case study A. These distributions are results of the digestions without the size selection process. The small bins of length range are

determined by the parameters shaping the distributions.
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combination producing a higher ratio of long restriction fragments
tends to generate less restriction fragments.

Besides the basic function, we also tested the SNPs calculating
function of RestrictionDigest with an unpublished SNP position file;
the SNP position file was generated in the oyster genome project and
it contains 5,923,862 SNPs in total. The parameter of the function
counting_SNPs_at_fragments took the default value ‘100PE’. The
numbers of expected SNPs of these digestions are listed in Table 2. We
can conclude from the data that the SNP number has a positive
correlation with the corresponding number of restriction fragments in
these digestions. Results of the SNPs calculating function provide more
concrete instructions than the results of the basic function of
RestricitonDigest::Singleltem.

Besides corn and oyster, RestrictionDigest has also been tested on
reference genomes of other model species, like human, mouse, and
fruit fly. It can easily precede the simulation of reference genomes
with billions of base pairs. RestricitonDigest is a powerful tool for
simulating the restriction digestions of big-size reference genomes.

4. Conclusion

Although constructing reduced-representation libraries by
digesting genomic DNA with restriction enzymes is widely used for
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Table 2
Expected numbers of SNPs of different enzyme pairs.

Enzyme pairs Numbers of expected SNPs
of digestions without size

selection process

Numbers of expected SNPs
of digestions with size
selection process

EcoRI + ApeKI 479,363 68,585
EcoRI + Mspl 481,561 69,377
ApeKI + Bfal 1,023,013 200,387
Mspl + Bfal 1,023,450 203,598

many species, there are few published computer programs that can
simulate the digestions and comprehensively evaluate the enzyme
usability in reduced-representation libraries construction. SimRAD
is one of the programs that can simulate the digestion of one
reference sequence and return enzyme loci number on the
sequence. We designed a Perl module with more functions and
improved performance named RestrictionDigest to simulate
restriction digestions of whole reference genomes and provide
essential information of the digestions. The essential information
helps researchers determine whether the candidate enzyme(s) can
meet their requirements or not. Besides essential information,
RestrictionDigest provides useful supplementary information to
help researchers make more detailed study plan. RestrictionDigest
can also analyze multiple reference genomes at one run and return
concise comparisons about the enzyme loci numbers across these
genomes which would be useful in phylogenetic studies. With the
help of RestrictionDigest, researchers can make the most applicable
experiment scheme which will save both time and financial costs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ejbt.2016.02.003.

Availability and requirements

Project name: RestrictionDigest

Project home page: https://github.com/JINPENG-WANG/
RestrictionDigest

Operating system(s): Linux, Mac OS X, Windows

Programming language: Perl

Other requirements: Perl 5

License: GNU General Public License

Any restriction to use by non-academics: RestrictionDigest use is
restricted to academic and non-profit users.
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Fig. 4. Distributions of restriction fragment lengths of case study B. These distributions are results of the digestions without the size selection process. The small bins of length range are

determined by the parameters shaping the distributions.
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