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ABSTRACT

The study examined the impact of in-situ climatic and marine environmental variability on cholera inci-
dence in an endemic area of Bangladesh and developed a forecasting model for understanding the magni-
tude of incidence. Diarrhoea surveillance data collected between 1988 and 2001were obtained from a field 
research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal 
specimens of patients who sought care at treatment centres serving the Matlab population. Cholera inci-
dence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ envi-
ronmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving 
average (SARIMA) model was used for determining the impact of climatic and environmental variability on 
cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 
4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly 
cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence 
by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal cluster-
ing of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum 
temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, 
there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera in-
cidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study 
period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean 
square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in 
forecasting cholera outbreaks in Matlab.
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INTRODUCTION

Cholera is an acute intestinal disease caused by 
the bacterium Vibrio cholerae. Although knowledge 
about the epidemiology and ecology of cholera 
has increased during the last two decades, cholera 
remains a serious problem in many areas of the 
world. Cholera appears to be influenced by climat-
ic changes (1-3). In some endemic areas, cholera 
outbreaks have predictable seasonal patterns. Un-
til recently, the reservoirs or sites for survival and 
multiplication of V. cholerae during inter-epidemic 
periods were unknown. Recent studies have pro-

vided more satisfactory explanations on how sea-
sonality and endemicity of cholera are maintained, 
providing clues about inter-annual variability (4). 
Lobitz and others hypothesized that rise in the lo-
cal sea-surface temperature influences the growth 
of phytoplankton concentrations, and an increase 
in sea-surface height increases human-Vibrio con-
tact by transporting the bacteria into inland waters 
through tidal intrusion of plankton (5). 

Lobitz et al. (5) linked remotely-sensed marine en-
vironmental data with cholera incidence in Bangla-
desh and found that sea-surface temperature (SST) 
was positively associated with cholera cases. They 
hypothesized that an increase of SST results in rep-
lication of phytoplankton populations, which are 
directly associated with the increase in V. cholerae 
bacteria and are linked spatially and temporally to 
zooplankton populations. Indirect measurement 
of ocean chlorophyll concentration (OCC) is also 
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possible with remotely-sensed satellite imagery 
(6). However, measurement of the OCC is difficult 
and possibly problematic for predicting variability 
across small areas. Locally-measured variables, such 
as temperature and rainfall, were found to be posi-
tively associated with an increase in the number 
of cholera cases (1,7). Understanding the environ-
mental drivers of cholera outbreaks could facili-
tate some degree of outbreak prediction, allowing 
governments to prepare and respond to potential 
outbreaks (e.g. by employing vaccines). It can also 
give insight into the local aetiology of cholera and, 
therefore, help with the planning of prevention 
strategies. 

Huq et al. (8) found significant correlations of wa-
ter temperature, water depth, rainfall, conductivity, 
and copepod counts with the occurrence of chol-
era from the data on four rural areas of Bangladesh.  
However, the environmental drivers for the occur-
rence of cholera were not same in all those four ar-
eas. The lag periods between increases or decreases in 
temperature and salinity and occurrence of cholera 
correlate with biological parameters, e.g. plankton 
population blooms. Hashizume et al. (9) found that 
the number of cholera cases increased with both 
high and low rainfall in the weeks preceding hospi-
tal visits in Dhaka, Bangladesh. Lower temperature 
predicted a lower incidence of cholera in the first 
15 weeks of the year, and low rainfall predicted a 
peak in spring, and high rainfall predicted a peak at 
the end of the monsoon (10). However, the mecha-
nisms of this seasonality of cholera are still not fully 
understood, despite long-standing recognition of 
the bimodal seasonality in Bangladesh. Hashizume 
and his colleagues (11)  observed an exception ally-
high SST and sea-surface height (SSH), preceding a 
sharp increase in the number of cholera patients 
in Dhaka in 1998, suggesting that SST should be 
taken into account when building predictive mod-
els for cholera, using ocean-climate data. Although 
attempts to predict the incidence of cholera, using 
ocean-climate data from preceding months, have 
been made (12-13), an accurate climate-based pre-
diction of cholera epidemics with a longer lag time 
has not yet been developed. Because of the serious 
global consequences of cholera and its sensitivity 
to climate, the World Health Organization has pro-
posed developing an early warning system for chol-
era epidemics, using climatic parameters (14).

In an earlier study (15) conducted in Bangladesh, 
ocean chlorophyll concentration was found to be 
positively and significantly associated with both 
high cholera outbreaks (more than 70% of out-
breaks) and extreme cholera outbreaks (more than 

85% of outbreaks); the two-month lag effects were 
also significantly and positively associated with 
increase in the magnitude of cholera. SST, rain-
fall, SSH, and temperature were not significantly 
associated with magnitude of cholera. The study 
employed a regression model, using two-month 
lag-dependent variables, assuming that the envi-
ronmental factors will have a two-month delayed 
effect on the outcome. Using time lag without fil-
tering of autocorrelation in time series data may 
not capture true time dependency between cholera 
outbreaks and environmental factors, and the re-
sults may mislead the reality. Studies of statistical 
methods have noted that seasonal autoregressive 
integrated moving average (SARIMA) is an appro-
priate method for time series data due to its inte-
grated functions for controlling seasonal variation, 
autocorrelation, and long-term trends (16,17). It 
has several advantages, in particular, its forecasting 
capability and richer information on time-related 
changes (18,19). SARIMA model is also useful for 
interpreting and applying surveillance data in dis-
ease control and prevention (20,21).

In this study, we used the SARIMA time series mod-
el to evaluate climate variability and the fluctuation 
of cholera incidences in Matlab, Bangladesh. The 
study measured the spatio-temporal association 
between cholera incidence and satellite-derived 
SST data, and the association between cholera inci-
dence and in-situ data for rainfall and temperature.

MATERIALS AND METHODS

Study area

The study site Matlab is located in south-central 
Bangladesh, approximately 50 km southeast of 
the capital city Dhaka and is adjacent to where 
the river Ganges meets the river Meghna, form-
ing the lower Meghna. This is a field research 
site of the International Centre for Diarrhoeal 
Disease Research, Bangladesh (icddr,b). The river 
Dhonagoda flows from north to south, bisect-
ing the study area into two approximately equal 
parts. Numerous canals also exist in the study 
area. These canals remain dry in the winter and 
become full of water during the monsoon. An 
embankment was built alongside the Dhona-
goda and the Meghna, which was commissioned 
in full at the end of 1989. The embankment was 
built primarily to protect the area from monsoon 
flooding so that agricultural activities can be car-
ried out throughout the year. The embankment 
protects 31% of approximately 210,000 people 
living in the study area from flooding.
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The study area has a tropical monsoon-type cli-
mate, with a hot and rainy summer and a dry 
winter. For practical purposes of this study, three 
seasons were distinguished in Bangladesh: sum-
mer (March-June), rainy (July-October), and win-
ter (November-February). January is the coolest 
month with temperatures averaging near 26 oC 
(78 oF), and April is the warmest with temperatures 
ranging from 33 oC to 36 oC (91 oF to 96 oF). The cli-
mate is among the wettest in the world. The study 
area receives more than 2,100 mm of rain a year. 
Most of the rain occurs during the monsoon (June-
September), and there is little rain in the winter 
(November-February).

Population data

The population database of icddr,b in Matlab is the 
most comprehensive longitudinal demographic 
database on a large population in the developing 
world (15). A health and demographic surveillance 
system (HDSS) has recorded all vital events of the 
area’s population since 1966. The population in the 
study area was approximately 210,000 during the 
study period. 

Cholera data

Diarrhoea surveillance data were obtained for all 
individuals living in the Matlab study area from 
1988 to 2001. Cholera cases were defined as Vibrio 
cholerae isolated from faecal specimens of patients 
who sought care at treatment centres serving the 
Matlab population. Cholera cases were aggregated 
by month. The cholera incidence in a month was 
calculated as the number of cases in the month 
divided by the mid-year population of the study 
area in the year, and the rates are expressed as cas-
es per 1,000 population. Figure 1 shows the fluc-
tuations of monthly cholera incidence during the 
study period.  

Environmental data

We obtained AVHRR (Advanced Very High Reso-
lution Radiometer) satellite-derived SST data for 
1985-2001 from NASA’s Jet Propulsion Labora-
tory. The satellite sensor collects SST data at 4 km 
area. In-situ environmental data include monthly 
ambient temperature and rainfall that were made 
available for the study period (1985-2001) from 
a weather station in Chandpur, which is located 
just outside the study area. We specifically selected 
these three environmental variables for this study 
because these variables are often found to be pre-
dictors of the magnitude of cholera in various parts 
of the world (5,7,15,22).

Analytical methods

We analyzed the data by month, incorporating 168 
time-points during the study period (1988-2001). 
The data prior to 1988 were avoided because there 
was an oral cholera vaccine trial in early 1985 that 
offered direct (23) and indirect protection (24) to 
people of the area. A SARIMA model was used for 
evaluating the effects of environmental variables 
on cholera transmission and assessing the ability 
of the model for forecasting cholera trasmission 
in the study area. Using data from 1988 to 2000, 
we fitted the model to cholera incidence (cases per 
1,000 people), and then the fitted model was used 
in predicting cholera cases for the year 2001. 

We used the Box-Jenkins modelling strategy (25) 
to conduct a time series analysis. First, we evalu-
ated the need for variance-stabilizing transfor-
mation by simple inspection of the graph of the 
untransformed series and practical tool, which is 
the mean-range plot (the range is plotted against 
the means for each seasonal period) of the un-
transformed and some transformed series (e.g. 
logarithm or square root). If the mean-range plots 
display a random scatter around a straight line, 
the logarithm transformation is needed (26). We 
determined the order of non-seasonal (p,d,q) and 
seasonal (P,D,Q) autoregressive (AR) parameters (p 
and P) and moving average (MA) parameters (q 
and Q) as well as the need for non-seasonal and 
seasonal differencing (d and D) and seasonal pe-
riod (s), using the following tools: (i) plot of chol-
era incidence and unit root test, which assists with 
the non-seasonal and seasonal differencing; (ii) 
autocorrelation (ACF) and partial autocorrelation 
(PACF) functions, which indicate the temporal de-
pendence structure in the stationary time series; 
(iii) Akaike Information Criterion (AIC), which as-
sists in the goodness-of-fit of the model penalizing 
for the number of parameters; (iv) Ljung-Box test, 
which measures the ACF of the residuals; and (v) 
significance of the parameters. 

We estimated the parameters of the SARIMA model 
by maximum likelihood. 

The goodness-of-fit of the model was determined 
for appropriate modelling, using both time series 
(ACF and PACF of residuals) and classic tools, which 
checked for the normality of the residuals (27). Fi-
nally, we graphically compared the model’s fitted 
values with the observed data to check if it, indeed, 
models the cholera incidence. We assessed the pre-
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dictive power of forecasting ability of the method, 
using the root mean square error (RMSE) criterion. 

RESULTS

There were 4,157 cholera cases during the study pe-
riod, with an average of 1.4 cases per 1,000 people. 
The characteristics of the data are shown in Table 
1. The time series of cholera incidence shows that 
there was no trend in cholera rates during the study 
period (Figure 1). Through the mean-range plots 
for each seasonal period (12 months), we found it 
necessary to stabilize the variance of cholera inci-
dence by computing its natural logarithm (Figure 
2). All further statistical procedures, descriptive and 
analytical, were performed on the logarithmically-

transformed cholera incidence. The plots of the 
sample ACF describes temporal dependence of 
cholera incidence at lag 1, 2, and at lag 11, 12, 13, 
and PACF describes the temporal dependence of 
cholera incidence at lag 1 and at lag 11 (Figure 3), 
suggesting that non-seasonal and seasonal param-
eters are needed in the model to account for the 
temporal autocorrelation in the data. Upon using 
the Augmented Dickey-Fuller Unit Root Test and 
checking ACF and PACF (28,29), we found that the 
data needed one-month non-seasonal differenc-
ing and 12-month seasonal differencing to make 
the data stationarity. Finally, we fitted the SARIMA 
(0,1,2) (0,1,1)12 model, which was found to be the 
best for these data.

Table 1. Characteristics of the study data, Matlab, 1988-2001
Variable (monthly average) No. of months Mean SD Minimum Maximum
Monthly cholera cases (number) 168 24.74 30.53 0 175
Population (number) 168 209,620 6,330 199,511 219,873
Minimum temperature (in degree celsius) 168 20.98 4.79 10.30 27.30
Maximum temperature  (in degree celsius) 168 30.21 2.89 22.40 35.10
Rainfall  (in mm) 168 168.65 156.36 0 746.0
Sea-surface temperature (in degree celsius) 168 28.34 1.93 24.3 31.95
SD=Standard deviation

Figure 1. Temporal patterns of cholera incidence, Matlab, 1988-2001 
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Figure 2. Mean-range plot for cholera incidence per 1,000 population for non-transformed data (left), 
square-root transformation data (middle), and log-transformed data (right), Matlab, 1988-2001
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Figure 3. Autocorrelation function (left) and partial autocorrelation (right) of log-transformed cholera 
incidence in Matlab, 1988-2001
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Inter-correlation among the independent variables, 
using a 12-month seasonal differencing, shows that  
minimum and maximum temperatures were sig-
nificantly correlated with each other (p<0.01; Table 
2). Maximum temperature was significantly and 
negatively correlated with rainfall (p<0.01). The 
results of the cross-correlations, using 12-month 
seasonal differencing, show that cholera incidence 
was positively associated (p<0.01) with minimum 
temperature in the current month, negatively as-
sociated (p<.05) at a lag of three months, and posi-
tively associated (p<0.05) at a lag of five months 
(Table 3). Maximum temperature was positively 
associated (p<0.05) with cholera incidence in the 
current month, negatively associated (p<0.05) at 
a lag of one-month, positively associated (p<0.05) 
at a lag of two months, and again negatively as-
sociated (p<0.05) at a lag of three months. SST was 
negatively associated (p<0.05) with magnitude of 
cholera at a lag of two months (Table 3). The data 
on average maximum temperature did not fit well 
in our model as seen in a study (30); therefore, we 
used the average minimum temperature in our 
model. The results of the SARIMA model showed 

that minimum temperature during the current 
month and SST at current month and at 2-month 
lag significantly influenced (p<0.01) cholera inci-
dence (Table 4). 

By using the SARIMA model with only minimum 
temperature variable in the equation, it showed 
that, with a minimum temperature increase of one 
degree celsius in the current month, there was a 6% 
increase in cholera incidence [exp (b)=1.06, p<0.01, 
caeteris paribus]. For increase of SST by one degree 
celsius, there was a 25% increase in the cholera 
incidence at currrent month and 18% increase of 
the cholera incidence at two months [caeteris pari-
bus]. This model was used in predicting cholera 
incidence from 1989 to 2001, and the results are 
shown in Figure 4. Since we used moving average 
from the 12-month seasonal differencing in the 
SARIMA model, the model eventualy accounts for 
the data from 1989. It is apparent that the predict-
ed incidence rates were reasonably well-matched 
with the observed incidence rate. The RMSE, a 
measure of the size of residuals from the model 
that used minimum temperature to predict chol-
era incidence, was 0.108, which means that if the 

Table 2. Inter-correlations among environmental variables, using 12-month seasonal differenc-
ing data, Matlab, 1988-2001

Variable Maximum temperature Rainfall Sea-surface temperature
Minimum temperature 0.31** -0.13 0.11
Maximum temperature - -0.33** 0.07
Rainfall - - -0.11
**p<0.01

Table 3. Cross-correlation coefficients of logarithmic transformation of observed cholera incidence and 
environmental variables, using 12-month seasonal differencing data, Matlab, 1988-2001

Variable Lag (month)
0 1 2 3 4 5

Minimum temperature 0.26** -0.01 0.04 -0.15* -0.01 0.16*
Maximum  temperature 0.16* -0.19* 0.17* -0.15* 0.02 0.06
Rainfall -0.1 -0.04 0.04 -0.01 0.05 0.11
Sea-surface temperature 0.12 0.10 -0.15* -0.07 0.04 -0.01
*p<0.05; **p<0.01



Ali M et al.Time series analysis of cholera

JHPN16

minimum temperature is used in predicting chol-
era incidence, roughly two-thirds of the residuals 
will fall between -0.108 and +0.108. The goodness-
of-fit analyses show that there was no significant 

autocorrelation between residuals at different lags 
in the SARIMA model (Figure 5). The Shapiro-Wilk 
test for normality also showed that the residuals 
were distributed normally (p=0.78).

Figure 4. Predicted and observed monthly cholera incidence rate, Matlab,1989-2001 
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Table 4. Regression coefficients of the SARIMA on the monthly cholera incidence, Matlab, 1988-2001
Parameter Estimate (b) Standard error p value
One-month moving average of cholera 
incidence (log-transformed) 0.406 0.079 <0.0001
Two-month moving average of cholera 
incidence (log-transformed) 0.207 0.078 0.008
Seasonal moving average (12-month) of 
cholera incidence (log-transformed) 0.691 0.081 <0.0001
Minimum temperature at current month 0.062 0.026 0.0015
SST at current month 0.229 0.061 <0.0001
SST at 2-month lag 0.161 0.061 0.008
Akaike Information Criterion (AIC) 362.74
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Figure 5. ACF (left) and PACF (right) of residuals from the SARIMA model
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DISCUSSION

The results of this study illustrate that fluctuation 
in the incidence of cholera in Matlab is tempera-
ture-driven. The relationship between both ambi-
ent and sea-surface temperature and amplification 
of cholera incidence is well-documented (5-6,8, 
30-33). This association likely exists because higher 
temperatures facilitate Vibrio reproduction, which 
increases concentrations in the aquatic habitat. At 
greater concentrations, there is an increased prob-
ability that people living in the area ingest an infec-
tious dose (6). Previous studies (15,33) conducted 
in Matlab showed that increased cholera caseload 
is associated with higher temperature, lower river 
discharge, and higher ocean chlorophyll concentra-
tion. We could not use the data on river discharge 
and ocean cholera concentration due to lack of re-
liable datasets. However, as found in a study con-
ducted in Dhaka (9), rainfall has not been found to 
be an influencing factor for the outbreak of cholera 
in Matlab, suggesting that the causal pathway of 
cholera between Dhaka and Matlab is not the same. 
The link between cholera outbreaks and higher 
temperatures is an important finding in light of 
the global warming phenomenon. Climatologists 
predict a 1.4 °C to 5.8 °C rise in mean temperatures 
over the next 100 years (34). Increased sea tempera-
ture and levels associated with global warming sug-
gest the possibility of increased cholera incidence 
in many resource-poor regions of the world.

The SARIMA model, based on temperature, fore-
cast cholera incidence in Matlab reasonably well. 
We used the SARIMA model which is appropriate 
for analyzing time series data (17); it determines 
whether AR or MA terms are needed to correct for 
autocorrelation that remains in the seasonally-
differenced data. We found some degree of tempo-
ral autocorrelation in the data, which was removed 
from the stationarized series by adding autoregres-
sive terms (lags of the stationarized series) to the 
model. The findings of this study, however, lead 
the authors to believe that seasonal variation in 
temperature may contribute to cholera incidence 
in complex ways, presumably through interaction 
with some unmeasured environmental or behav-
ioural factors (10).

The results of our study show three peaks in the 
cholera incidence in a month of the year 1993, 
1994, and 1995. There was an emergence of new 
strain of cholera—V. cholera O139—in 1993 (35), 
which co-existed with El Tor for some time and 
showed a peak in 1993. There are fluctuations of 
cholera cases by year as well as variations in the 

seasonal peak in Matlab (36). The three peaks are 
just the results of the outbreak of V. cholera O139 
and variations of cholera cases by year and by sea-
son. Cholera incidence in the study area is usually 
higher before and after the monsoon (36,37); thus, 
we usually see two peaks in a year. This study also 
found that the lag relationship with the outcome 
is not linear and one-directional. It is possible that 
the cholera caseload can be higher at the month 
of increase in temperature and then can be lower 
at three months after increase in temperaure in a 
country, like Bangaldesh. 

Limitations

The limitation of this study is that we could not 
collect ocean chlorophyll concentration (OCC) 
for the study period, which is found to be associ-
ated with the magnitude of cholera in Bangladesh 
(16). Also, we could not collect the data on sun-
shine hour, which is found to be associated with 
the magnitude of cholera (33). Additionally, since 
our forecasting model is based on the symptomatic 
cases and the immunity derived from the mild in-
fections wanes very rapidly, the inapparent infec-
tions in the study area may change the patterns of 
forecasting the disease outbreaks (38). 

Conclusions

Albeit with the limited datasets, this paper supports 
the premise that the magnitude of cholera in Mat-
lab is temperature-driven, both ambient and sea-
surface temperature. A perfect model for predicting 
cholera outbreaks in the area based on only envi-
ronmental variables is difficult because the disease 
may have complex relationships with local popula-
tion dynamics, the population’s health behaviour, 
and health practices. The results of this study may 
provide a basis for predicting cholera epi demics in 
Bangladesh and have the potential to improve dis-
ease control in vulnerable areas.
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