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Abstract
Background: Recombinant human endostatin (Endostar) has been widely used to suppress angiogenesis in carcinoma patients. 
Hypertrophic scar (HS) tissue, much like a carcinoma, is often associated with angiogenesis. However, there have been few stud-
ies conducted on the effects of  Endostar on HS or its mechanism.
Objective: This paper investigated the effects Endostar on the HS of  rabbit ears and studied the effects of  Endostar on VEGF 
and TIMP-1 expression.
Methods: Sixteen New Zealand white rabbits were used to establish HS models. Then, rabbit ears containing HS were randomly 
assigned to either the Endostar group or the control group. The changes of  appearance and histology were evaluated using the 
naked eye, hematoxylin eosin staining, and a scar elevation index. The VEGF and TIMP-1 expressions were detected by immu-
nohistochemical staining, RT-PCR, and western blot.
Results: The thickness of  the connective tissue in the Endostar group were thinner, the numbers of  micro vessels and fibro-
blasts were fewer, and the collagen fibers were smoother. Moreover, the mRNA and protein expressions of  VEGF and TIMP-1 
in the Endostar group were significantly lower than those in the control group.
Conclusion: The results suggested that Endostar reduced the formation of  HS by down-regulation of  VEGF and TIMP-1 
expressions.
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Introduction
A hypertrophic scar (HS), an excessive healing reaction to 
injury, is characterized by excessive fibrosis and collagen 
deposition in extracellular matrix (ECM)1. Surgical exci-
sion, intralesional injection of  steroids, radio frequency, 
radiation, and use of  lasers are the most frequently used 

treatments for HS2. Nevertheless, there is no consensus 
on which treatment is the most effective with the fewest 
side effects. Therefore, novel strategies for the prevention 
and treatment of  HS are worthy of  further investigation 
toward the goal of  its occurrence being avoided entirely.

Recent research shows that HS is associated with the ab-
normal proliferation of  fibroblasts and the overproduc-
tion of  collagen and extracellular matrix1,3. In addition, 
angiogenesis plays an essential role in the early stages of  
wound healing, and micro vascular abnormality is found 
in pathological scars3. Moreover, research suggests that 
HS has increased vascular components compared to nor-
mal dermis or scars4-6. Thus, it was theorized that anti-
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angiogenesis is the key to inhibiting the formation of  HS.
Endostar is a modified human endostatin with a nine ami-
no acid sequence at the N-terminus (MGGSHHHHH). 
It is widely used in suppressing angiogenesis in carcino-
maand is far more efficient than previous endostatins7. 
Although HS presents angiogenesis much like carcinoma, 
there are limited studies regarding the effects of  Endostar 
on HS and its molecular mechanism.

Vascular endothelial growth factor (VEGF), a positive 
regulator of  angiogenesis, is produced in large amounts 
by epidermal cells during wound healing8. The over ex-
pression of  VEGF has been demonstrated in early stages 
of  pathological scar formation9,10. Inhibition of  VEGF 
activity with the injection of  anti-VEGF antibodies has 
been shown to decrease capillary formation, collagen I 
production, and overall scar volume11. Although the over 
expression of  VEGF has shown to be significantly cor-
related with the formation of  scars, the relationship be-
tween Endostar and VEGF remains undetermined in HS.

The major effectors of  ECM degradation and remod-
eling belong to a family of  structurally related enzymes 
called matrix metalloproteinases (MMPs). Endogenous 
inhibitors of  MMPs are tissue inhibitors of  metallopro-
teinases (TIMPs). Increased levels of  TIMP-1 have been 
found in patients with HS, suggesting that elevated sys-
temic TIMP-1 concentrations might contribute to tissue 
fibrosis, leading to HS formation12.

Excessive expressions of  TIMP-1 and VEGF have been 
shown to be correlated with pathological scar formation. 
Because HS is associated with the occurrence of  angio-
genesis and Endostar is an angiogenesis inhibitor, this 
study aimed to investigate the effects of  Endostar on HS 
tissue in model of  rabbit ears and the effects of  Endostar 
on VEGF and TIMP-1 expressions.
 
Materials and methods
Ethics statement
All animals were studied according to the guidelines of  
the Declaration of  Helsinki, and experiments were car-
ried out with the approval of  the Animal Experimenta-
tion Ethics Committee of  Chongqing Medical University.
 
Establishment of  model rabbit ears
Sixteen male adult New Zealand white rabbits weighing 
between 2.2 and 2.5 kg were selected for this study. The 
rabbit HS models were established according to the pre-
vious report13. The animals were anaesthetized with 1% 
(10 g/L) pentobarbital sodium (1 mg/kg), and then one 
hundred ninety-two wounds were created on the ventral 
surface of  each ear by means of  an 11 mm pen cover 
(Figure 1). An operating loupe was used to ensure the 
removal of  the epidermis, dermis, and perichondrium in 
each wound. Thereafter, the wounds were cleaned every 
day to remove the crust and stimulate the growth of  gran-
ulation. After 25 days, 128 rabbit HSs had formed. Two 
wounds on the tail of  each ear were discarded because 
no HS had formed according to the scar elevation index.
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Treatment
Thirty-two ears, which contained a total of  128 HSs, were 
randomly assigned to the Endostar group and the control 
group. The control group was treated with saline injec-
tions, and the Endostar group was treated with Endostar 
injections (5 mg/mL, Simcere Pharmaceutical Group, 
China). Each scar was injected with 1 mL solution once 
every two days for a total of  5 treatments. After 30 days, 
the rabbits were euthanized and the scars were harvested.
 
Scar elevation index
Scar elevation index (SEI) is a ratio of  the total height of  
the wound area tissue to the area of  normal tissue below 
the scar. The height of  the normal tissue is determined 
based on the height of  the adjacent unwounded dermis. 
A SEI of  1 indicates that no newly hypertrophied dermis 
has formed, whereas an index >1 indicates the formation 
of  HS14.
 
Hematoxylin - Eosin staining
The samples were fixed with 10% buffered formalin, de-
hydrated, embedded in paraffin, cut in 5 mm sections, 
and stained with haematoxylin and eosin (H&E).
 
Quantitative real-time RT-PCR
Twenty randomly selected tissues from the Endostar 
group and twenty from the control group were selected for 
immunohistochemistry examination and the VEGF and 
TIMP expressions at the RNA level were evaluated. Total 
RNA was extracted using Trizol reagent (Takara, Dalian, 
China) according to the manufacturer's instructions, and 
contaminating genomic DNA was removed by incuba-
tion with DNase I (Takara, Dalian, China). RNA purity 
and concentration were determined by spectrophotom-
etry. PCR was carried out according to the standard pro-
tocol on a real-time PCR-system (Applied BioSystems) 
with SYBR Green detection. After an initial incubation 
of  the 10 µl reaction mixture for 1 min at 95° C, 39 cycles 
(95° C for 20 s, 58° C for 25 s) were performed for ampli-
fication. The specificity of  amplification was confirmed 
by melting curve analysis. Each sample was tested in trip-
licate and the results were normalized to the level of  gene 
GAPDH. The sequences of  each set of  primers were as 
follow: 5’-CATATTCAAGCCTTCCTGC-3’ (sense) and 
5’-GGTCTGCATTCACATTTGTTG-3’ (antisense) for 
VEGF; 5’- TGTTGTTGCTGTGGCTGATAG-3’ (sense) 
and 5’-CGCTGGTATAAGGTGGTCTGG-3’ (anti-

sense) for TIMP-1; 5'-CAGCGACACCCACTCCTC-3' 
(sense) and 5'-TGAGGTCCACCACCCTGT -3' (anti-
sense) for GAPDH. Relative gene expression was calcu-
lated as 2−ΔΔCT.
 
Immunohistochemical staining
Sixty-four tissues from the Endostar group and sixty-four 
from the control group were collected for immunohisto-
chemical staining, which was performed on 5 μm paraf-
fin tissue sections mounted on polylysine-coated slides 
and dried at 37°C overnight. After the slides were de-
paraffinized in xylene and rehydrated conventionally, the 
endogenous peroxidase was blocked with 3% hydrogen 
peroxide in methanol for 20 minutes. Each slide was in-
cubated with normal goat serum for 20 minutes at room 
temperature. The sections were incubated with rabbit 
anti-VEGF polyclonal antibody (1:100 dilution, Boster 
Biological Technology, Ltd, Wuhan, China) and rabbit 
anti-TIMP-1 polyclonal antibody (1:100 dilution, Boster 
Biological Technology, Ltd, Wuhan, China)  overnight 
at 4° C. After washing with phosphate-buffered saline, 
sections were incubated for 30 minutes with a horserad-
ish peroxidase labeled polymer anti-rabbit secondary an-
tibody (Boster Biological Technology). Chromogen 3, 
3-diaminobenzidine (Boster Biological Technology) was 
used for 15 minutes to visualize immunolabeling, result-
ing in a brown precipitate. After washing, the sections 
were counterstained with hematoxylin. Positive and nega-
tive immunohistochemistry controls were routinely per-
formed.

Staining intensity was given one of  the following four 
grades: none (0), weak (1), moderate (2), or strong (3). The 
percentage of  positive cells was also given one of  the fol-
lowing four grades: 0 (<1%), 1 (2%-20%), 2 (21%-50%), 
3 (51%-100%). The staining result was semi-quantitative-
ly assessed by the score combined with staining intensity 
and the percentage of  positive cells15. An express severity 
score less than 2 was negative (-), 2-3 was weakly positive 
(+), more than 3 was strongly positive (++); the results 
were then judged according to the score. The scores from 
two independent investigators were compared and dis-
agreements were resolved by consensus.
 
Western blot
Twenty randomly selected tissues from the Endostar 
group and twenty from the control group were selected 
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for immunohistochemistry, and the VEGF and TIMP-
expressions at the protein level were evaluated. Protein 
samples (40 μg) were separated on precast 10% SDS 
polyacrylamide gels (SDS-PAGE). After electrophoresis, 
the proteins were transferred to PVDF membrane fil-
ters (Millipore Biotechnology, Billerica, MA, USA). The 
membranes were incubated overnight at 4°C with prima-
ry rabbit polyclonal VEGF-A antibodies (Immunoway 
Biotechnology Company, Newark, DE, USA) or primary 
rabbit polyclonal TIMP-1 antibodies (Immunoway Bio-
technology Company, Newark, DE, USA). After washing 
three times in TBS-T, horseradish peroxidase (HRP)-con-
jugated secondary antibodies were used at a dilution of  
1:5000 in TBS-T for 2 h at room temperature. After three 
additional washes with TBS-T, the immunoreactive bands 
were visualised with a chemiluminescence reagent (ECL, 
Millipore Biotechnology, Billerica, MA, USA) and quanti-

fied using a Bio-Rad imaging system (Bio-Rad Laborato-
ries, Inc, Hertfordshire, UK).
 
Statistical analysis
SPSS software version 14.0 Sciences (SPSS Inc, USA) was 
used for statistical evaluation. Mann-Whitney U and Stu-
dent’s tests were used for comparing the groups. A prob-
ability value of  P <0.05 was considered significant.
 
Results
Formation of  hypertrophic scars on rabbit ears
After 25 days, 128 HSs on the rabbit ears were success-
fully formed based on the rule of  SEI >1. The HSs were 
erythematous, highly elevated from surrounding tissue, 
and stiff  upon palpation (Figure 2). Afterwards, the HSs 
were divided into two groups and treated with either 
Endostar or saline.

Endostar improves appearance of  scar
As shown in Figure 3A and Figure 3B, scars in the End-

ostar group were softer, less erythematous, and thinner 
when compared to the control group after treatment with 
Endostar.
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Histology changes and scar index
To investigate whether Endostar affected the histology 
of  HS, HE staining was conducted. As shown in Figures 
4A and 4B, scars in the Endostar group had thinner con-
nective tissue and less capillary and fibroblasts than those 
in the control group. Moreover, the distribution of  col-

lagen fibers in the Endostar group was regular, while they 
were littery and circinate in the control group. To better 
understand these changes, the scars were harvested for 
SEI measurement. It was discovered that the SEI of  the 
Endostar group was significantly lower than that of  the 
control group. SEI in the Endostar group was 1.37 ±0.21 
compared to 2.65 ±0.21 in the control group (P<0.05).
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Endostar down-regulates mRNA expressions of  
VEGF and TIMP-1
To determine the effects of  Endostar on the VEGF and 
TIMP-1 mRNA expressions, RT-PCR was used to ana-
lyze their levels in the scar tissues. The relative expression 
of  VEGF was 1.00 ±0.07 and 0.78 ±0.16 in the control 

group and Endostar group, respectively (Figure 5A). The 
relative expression of  TIMP-1 was 1.00 ±0.05 and 0.64 
±0.15 in the control group and Endostar group, respec-
tively (Figure 5B). These results showed that Endostar 
significantly suppressed the expressions of  VEGF and 
TIMP-1 mRNA.

African Health Sciences Vol 16 Issue 2, June 2016 547



Endostar down-regulated protein expressions of  
VEGF and TIMP-1
Firstly, sixty-four scars in the Endostar group and sixty-
four scars in the control group were tested for VEGF and 

TIMP-1 expressions by immunohistochemistry with their 
specific antibodies. Positive staining of  VEGF was ob-
served in 92.2% (59/64) scars in the control group, while 
there were only 59.4% (38/64) observed in the Endostar-
group (Figures 6A, 6B). 
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TIMP-1 was expressed in 87.5% (56/64) of  the scars in the control group, and only 56.3% (36/64) of  the scars in 
the Endostar group (Figure 6C,Figure 6D). 
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These results showed that the protein expressions of  VEGF and TIMP-1 were significantly down-regulated by 
Endostar (both P<0.05) (Table 1). 

Table I.  Expression of VEGF and TIMP-1 in scar 
    VEGF   TIMP-1   

Type n – ＋ ++ P value – ＋ ++ P value 

Endostar 64 26 33 5 <0.05 28 31 5 <0.05 

Control 64 5 46 13   8 40 16   
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Figure 6C. Positive staining of TIMP-1 in control group (SAB ×400). 

 
Figure 6D. Positive staining of TIMP-1 in Endostar group (SAB×400). 



Thereafter, to verify the above results, protein expressions 
of  VEGF and TIMP-1 were further detected by western 

blot. These results also suggested that Endostar signifi-
cantly decreased the expressions of  VEGF and TIMP-1, 
compared to the scars in the control group (Figure 7).

Discussion
Altered appearance and function seriously affect the lives 
of  HS patients. In addition, no single treatment appears 
to be effective for all HS sufferers. However, Endostar is 
a potent inhibitor of  angiogenesis and has been success-
fully used in carcinoma therapy for its anti-angiogenesis 
properties7. It also plays an important role in anti-fibrosis 
treatment16. For example, Endostar significantly decreases 
the expression of  Collagen-I, Collagen-III, and TGF-β1 
in HS of  rabbit ears17-18. Endostar also decreases the 
expressions of  α-SMA and CTGF in other models19-20. 
Because HS is also associated with increased angiogen-
esis and ECM21-23, it was chosen as the object of  this 
study, which showed that Endostar significantly reduced 
the formation of  HS in rabbit ears by down-regulating 
VEGF and TIMP-1 expressions.

In this study, Endostar was administrated to the rabbits 
after the formation of  the scars rather than before be-
cause it was believed that Endostar could decrease the 
microvessel density of  the granulation tissue and delay 
wound healing24. After treatment with Endostar, the 
thickness of  the connective tissues in HS was thinner, 
the number of  micro vessels and fibroblasts were fewer, 
and the collagen fibers were smoother than those in the 

control group. This suggested that Endostar had a signifi-
cantly inhibitive effect on HS formation. VEGF mono-
clonal antibody, another anti-angiogenesis protocol, has 
been reported to inhibit collagen production and exces-
sive scar growth in HS11,25. In this study, it was found that 
mRNA and protein expression of  VEGF was significant-
ly decreased following Endostar treatment. Therefore, it 
was concluded that the inhibition of  HS formation with 
Endostar may partly result from the reduction of  angio-
genesis by anti-VEGF mechanism.  

It is important to maintain a balance between the synthe-
sis and degradation of  ECM in wound healing26. Exces-
sive synthesis or lessened degradation of  ECM will result 
in hypertrophic scars23. TIMPs and MMPs play a critical 
role in the formation, alteration, and degradation of  ma-
trix proteins27-29. TIMP-1 can combine with most MMP 
active sites, thus inhibiting enzyme activity30-31. However, 
some research has found that the expression of  TIMP-1 
is significantly higher in the scar tissue of  patients with 
HS than in scar tissues of  patients with normotrophic 
scars32. Moreover, targeting TIMP-1 using small interfer-
ing RNA has significant therapeutic potential as an ap-
proach to treating keloids33. In this study, the expression 
of  TIMP-1 was significantly decreased with Endostar 

African Health Sciences Vol 16 Issue 2, June 2016 551



treatments, while the group that did not receive Endostar 
therapy showed over expression of  TIMP-1. Thus, it was 
thought that down-regulated TIMP-1 by Endostar also 
contributed to the inhibition of  HS formation.  

Conclusion 
The findings suggested that Endostar reduced the forma-
tion of  HS by down-regulation of  VEGF and TIMP-1 
expressions. However, whether Endostar directly targeted 
TIMP-1 or by another pathway requires further investiga-
tion. Therefore, further studies are needed to elucidate 
the more precise molecular mechanism of  Endostar on 
the inhibition of  HS.  
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