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Abstract
Objectives: The aim of  the present study was to determine the susceptibility status of  Culex pipiens pipiens populations against 
deltamehtrin insecticide.
Methods: Larvae of  Culex pipiens pipiens were collected from three breeding places in Northern and Southern Tunisia between 
2003 and 2005. Early third and late fourth instars were tested against deltamethrin pyrethroid insecticide. Cross-resistance with 
DDT resistance was evaluated in studied samples to estimate the role of  target site insensitivity and two synergists including 
piperonyl butoxide (Pb) and S,S,S-tributyl phosphorotrithioate (DEF) were used to estimate the role of  detoxification enzymes.
Results:  Our results revealed that the level of  deltamehtrin resistance ranged from 0.67 to 31.4. We also showed the non-in-
volvement of  kdr resistance in pyrethroid resistance and no cross-resistance with DDT resistance was detected in all studied 
populations including the most resistant one. Synergists study on the resistant population (sample # 1) showed the involvement 
of  CYP450 in the recorded resistance to the deltamethrin insecticide.
Conclusion: The results obtained from this study should be considered in the current control programs to combat mosquitoes 
in Tunisia.
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Introduction
Culex mosquitoes are known as main vectors of  lymphat-
ic filariasis and several viral pathogens1 including West 
Nile encephalitis which regularly strikes Tunisia, North 
Africa2. Mosquito-borne diseases continue to dramatical-
ly affect public health and to constrain economic devel-
opment worldwide. Due to absence of  vaccination avail-
able for some of  the most devastating mosquito-borne 

diseases, mosquito control is considered as the better 
method of  intervention3. Most mosquito control pro-
grams still mostly depend on chemical insecticides4 in-
cluding pyrethroids which are the most commonly used 
insecticides due to the relatively low mammalian toxicity 
and rapid knockdown effect on insects5. However, these 
gains are threatened by the rapid development and spread 
of  insecticide resistance that would threaten the efficacy 
of  control programs. Hence, it is important to prevent 
or delay the emergence and development of  resistance 
to pyrethroids to improve vector control efforts. Knowl-
edge of  resistance status and understand its mechanisms 
would be of  great importance.
Increased detoxification and target site insensitivity6 are 
the two main resistance mechanisms of  mosquitoes to 
pyrethroids. Three major gene families of  detoxification 
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enzymes are well documented7 and have associated with 
pyrethroid resistance in mosquitoes8-10: cytochrome P450 
monooxygenases (CYP450), carboxyl/choline esterases 
(CCEs) and glutathione-S-transferases (GSTs). The tar-
get sites of  pyrethroids, known as knockdown resistance 
(kdr), encode voltage-gated sodium channels, and muta-
tions in the sodium channel have been shown in several 
insect species11 to reduce neuronal sensitivity to DDT 
and pyrethroids12.
Previous studies reported low, moderate and high level 
of  resistance to pyrethroids in Culex mosquitoes from 
Tunisia4,13. Here, we studied the resistance status of  Cu-
lex pipiens pipiens to deltamethrin insecticide in Tunisia. 
Cross-resistance with DDT resistance was evaluated in 
studied samples to estimate the role of  target site insen-
sitivity and two synergists including piperonyl butoxide 
(Pb) and S,S,S-tributyl phosphorotrithioate (DEF) were 
used to estimate the role of  detoxification enzymes.

Materials and methods
Larvae of  Culex pipiens pipiens were collected from three 
breeding sites in Northern and Southern Tunisia between 
2003 and 2005. Collected larvae were transported to the 
laboratory and directly transferred into plastic trays con-
taining distilled water with rabbit croquette which served 
as food under standard insectary conditions (25 ± 1°C 
and 70 ± 5% RH). Late 3rd or early 4th instar larvae were 
identified morphologically14 and tested for susceptibili-
ty to deltamethrin pyrethroid insecticide. The synergists 
tested to estimate metabolic resistance were piperonyl bu-
toxide (Pb) and S,S,S-tributyl phosphorotrithioate (DEF). 
We evaluated the DDT resistance of  studied samples to 
detect cross-resistance with pyrethroid resistances which 
have a common target site. Standard methods of  Ray-

mond et al15 for testing mosquito larvae were essentially 
followed to performed bioassays. Bioassays were per-
formed on field populations and/or F1 and F2 labora-
tory generations in order to finalize all necessary tests.
Deltamethrin bioassays included 5 concentrations pro-
viding between 0 and 100% mortality and 5 replicates per 
concentration on sets of  20 late 3rd and early 4th instars 
in a total volume of  100 ml of  water containing 1 ml 
of  ethanol solution of  the tested insecticide. The serial 
dilutions of  each insecticide were performed to generate 
concentration-mortality curves. The effect on pyrethroid 
resistance of  2 synergists: the DEF (98%, Chem Service, 
England), and Pb (94%, Laboratory Dr Ehrenstorfer, 
Germany) , was studied by exposing larvae to a standard 
sub-lethal doses of  0.08 mg/l for DEF , and 2.5 mg/l 
for Pb , 4h before the addition of  the insecticide15. Tests 
were cancelled if  mortality exceeded 10% in control bea-
kers. LC50, LC95 and regression line were calculated by log 
probit program of  Raymond16, based on Finney17.Values 
of  LC50, LC95, confidence limits at 95% and slopes were 
computed. Susceptible strain was used to calculate the 
Resistance ratio at LC50 which is LC50 of  field popula-
tion/LC50 of  sensitive strain and synergism ratio at LC50 
which is LC50 in absence of  synergist/LC50 in presence 
of  synergist.

Results
In the present study, three field-populations of  Culex pip-
iens pipiens were collected from different parts of  Tunisia. 
The results of  experiments have been shown in Table 1 
that reveals the resistance of  studied populations to del-
tamethrin insecticide which ranged from 0.67 to 31.4. 
Bioassays showed that the sample # 1 was resistant to 
used insecticide reaching 31.4. 
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However, samples # 2 and 3 were susceptible and their 
resistance rations did not exceed 0.81. No cross-resis-
tance between pyrtehoird and DDT insecticides (Table 2) 
was detected in all samples showing any correlation be-
tween both insecticides and indicated the non-involvment 
of  kdr mutations since both insecticides target the volt-
age-gated sodium channel of  insect. Indeed, the alone re-
sistant population to deltamethrin showed low resistance 
ratio to DDT insecticide (1.95). Likewise, the two sus-
ceptible population recorded low resistance level to DDT 

not exceeding 4-folds. Bioassays synergists (Table 1) re-
alized on the resistant population (sample # 1) showed 
that there was no significant effect of  DEF synergist on 
the toxicity of  deltamethrin insecticide in the studied 
sample, suggesting the non-involvement esterase (and/
or GST) in the recorded resistance. Indeed, the SR50 was 
not significantly higher than that recorded in S-Lab in the 
studied sample. However, resistance ratio of  sample # 1 
was affected by Pb synergist showing the involvement of  
CYP450 in the recorded resistance (RSR>18).

Table 2: DDT resistance characteristics of Tunisian Culex pipiens pipiens 
  
  
Population 
  

LC50 in µg/l (a) Slope ± SE RR50 (a) 

Slab 
  

3,1 (2,7–3,4) 3,26 ± 0,26 - 
1-Sidi Hcine 
  

6.1 (4–9.3) 1,78 ± 0,23 1,95 (1,40–2,73) 
2-El Fahs 
  

14 (5,1–39) 1,29± 0,29 4,53 (2,83–7,26) 
3-Jebeniana 
  

6,7 (5–8,8) 1,54 ± 0,17 2,13 (1,67–2,72) 

    (a), 95% CI;  RR50, resistance ratio at LC50 (RR50=LC50 of the population considered/LC50 of Slab). 

Table 1: Deltamethrin resistance characteristics of Tunisian Culex pipiens pipiens 
 

Population Deltamethrin Deltamethrin +DEF Deltamethrin +Pb 
LC50 in 

µg/l 
(a) 

Slope 
± SE 

RR50 
(a) 

LC50 in µg/l 
(a) 

Slope 
± SE 

RR50 
(a) 

SR50 
(a) 

RSR 
  

LC50  in µg/l 
(a) 

Slope 
± SE 

RR50 
(a) 

SR50 
(a) 

RSR 
  

Slab 0.18 
(0.17–0.20) 

3.53 
 ± 0.24 

- 
  

0.18 
(0.07–0.47) 

2.59 
± 1.07 

- 
  

1.02 
(0.41–2.56) 

- 
  

0.02 
(0.01–0.06) 

1.20 
± 0.33 

- 10.0 
(6.27–16.1) 

- 
  

 
1- Sidi Hcine 

 
5.7 

 (2.8–11) 

 
1.36 

 ± 0.25 

 
31.4 

(21.1–46.6) 

 
4.5 

(3.1–6.5) 

        
 1.34 ± 

 0.12** 

 
25.5 

(10.4–62.1) 

 
1.26 

(0.84–1.89) 

 
1.23 

 
0.03 

(0.02–0.05) 

 
1.45 

± 0.21 

 
1.74 

(1.04–2.92) 

 
181 

(116–282) 

 
18.0 

 
2- El Fahs 

 
0.12 

(0.07–0.23) 

 
2.01 

 ± 0.42 

 
0.67 

(0.41–1.08) 

 
- 

 
- 
  

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
3- Jebeniana 

 
0.15 

(0.06–0.40) 

 
1.23 

  ± 0.31 

 
0.81 

(0.53–1.24) 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

  
(a). 95% CI; ** Parallelism test positif but without probability. 
RR50. resistance ratio at LC50 (RR50=LC50 of the population considered/LC50 of Slab); SR50. synergism ratio (LC50 observed in absence of synergist/LC50 observed in presence of synergist). RR and SR considered significant (P<0.05) if their 95%CI 
did not include the value 1. 
RSR. relative synergism ratio (RR for insecticide alone / RR for insecticide plus synergist). 
Note: the empty cells was due to the loss of some populations. 
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Discussion
The present paper reported low and high resistance levels 
deltamethrin pyrethroids. Previous studies showed that 
some populations showed high resistance to permethrin 
pyrethroids (up to 5,000-fold) in Tunisia4. Nine years ear-
lier, resistance ratio levels of  9092-folds and 453-folds of  
Culex pipiens pipiens from Tunisia was recorded to perme-
thrin and deltamethrin, respectively13. Similar results were 
found in the most parts of  the worldwide although low 
resistance ratios were also recorded to permethrin insec-
ticide: <4-folds in Venezuella18, 18.3-folds in California19, 
9.5 to 82-folds in Ivory Coast and 17 to 49-folds in Burki-
na Faso20, 2500-folds in Saudi Arabia21 and 2800-folds in 
Martinique22. In contrast, resistance to deltamethrin in-
secticide was lower than recorded in Tunisia: 9 to 38-folds 
in West Africa20 and 12-folds in California19.

Synergist assays indicated that CYP450 were involved as 
the resistance mechanism to deltamethrinin in the alone 
resistant Culex pipiens pipiens population tested. Daaboub 
et al13 showed that permethrin and deltamethrin resis-
tances recorded in Culex pipiens pipiens from Tunisia was 
almost completely suppressed by Pb and partially sup-
pressed by DEF synergists, suggesting the major and the 
minor involvement of  cytochrome P450 and esterases 
(and/or GSTs) in recorded resistance, respectively. Using 
the same synergist, Ben Cheikh et al4 reported that ester-
ases (and/or GSTs) were not involved in the resistance to 
permethrin pyrethroids in Tunisian populations of  Culex 
pipiens although CYP450s played only a minor role. The 
involvement of  detoxification enzymes in pyrethroid re-
sistance was widely documented.  Amin and Hemingway21 
reported the important contribution of  oxidases in the 
high resistance to permethrin (2500-fold) of  Culex pipiens 

quinquefasciatus from Saudi Arabia. According to McAbee 
et al19, carboxylesterases and CYP450 played an import-
ant role in the resistance to permethrin pyrethroids of  
Culex pipiens pipiens from California. Synergistic and bio-
chemical tests revealed that the resistance to permethrin 
pyrethroids (3750-fold) of  Culex pipiens quinquefasciatus 
from West Africa was due in part to CYP45020. However, 
Bisset et al18 showed that detoxification enzymes were not 
involved in resistance to permethrin and deltamethrin in 
Culex pipiens quinquefasciatus from Venezuela.

The present study reported a negative correlation be-
tween resistance to DDT and deltamethrin insecticides. 
Contrary, opposite observations have been observed in 
several mosquito species including Aedes aegypti23, Culex 
pipiens quinquefasciatus24, Anopheles quadrimaculatus25, Culex 
pipiens pipiens4, Anopheles gambiae26 and Aedes albopictus23. 
It is important to note that the prolonged and intensive 
use of  DDT against malaria vectors in these countries 
could be probably responsible for the cross-resistance re-
sistance expressed by their common target site (kdr mu-
tation). Indeed, previous studies reported that CNaVD 
modification was implicated, in addition to detoxification 
enzymes particularly CYP450, in permethrin pyrethroids 
resistance of  Culex pipiens quinquefasciatus20 mosquitoes, 
Anopheles stephensi27 and Culex pipiens pipiens19.

Raymond et al28 have shown that the association of  detox-
ification with an insensitive target is additive with a major 
role of  target site. The absence of  the important mech-
anism in the resistant studied sample suggests the inter-
vention of  other factors in the recorded resistance. In this 
context, we should note that detoxification enzymes may 
be insensitive to the effects of  synergists which probably 
explain the absence of  esterases in the studied sample.
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Conclusion
The results obtained from this study revealed different 
levels of  deltamehtrin resistance in Culex pipiens pipiens 
from Tunisia. Considering the ecological plasticity of  this 
species and their role in the transmission of  several dis-
eases, further investigation are needed to well understand 
the resistance mechanisms of  this species against insecti-
cides using molecular and biochemical methods.
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