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ABSTRACT: In this work we use the finite element method to analyze the distribution of velocity in a 
viscous incompressible fluid flow using Lagrange interpolation function. The results obtained are highly 
accurate and converge fast to the exact solution as the number of elements increase. @JASEM 

 
A fluid is basically any substance that deforms 
continuously.  Its motion is governed by the Stokes 
equations also known as Navier-Stokes equations. 
The fluid may be compressible or incompressible. In 
this study, we consider viscous incompressible fluids. 
It should be noted that stokes equation can also be 
used to model turbulent flow, in this case, the fluid 
parameters are treated as time average values (Lions, 
1998 and Efunda, 2005). Finite element method is 
well treated in many standard texts (Burnett, 1987; 
Bickford, 1989; and Fagan, 1992). The determination 
of an accurate characterization of fluid flow has been 
the subject of much research. Some of these 
researchers include Stokes, Reynolds, Navier, 
Bernoulli, Petroff, Sommerfeld etc. Their works 
formed the fundamental principles of fluid dynamics. 
(Fox; McDonald,1996; Massey; Wardsmith, 2001) 
Also, Demkowicz et. al. (1990) developed a new 
finite element method for solving compressible 

Navier-Stokes equations. Their method was based on 
a version of Strang's operator splitting and an h-p 
adaptive finite element approximation in space.  
 
Wu and Jin (2005) proposed a numerical method for 
solving Stokes equation with corner singularity. First, 
they solved a simple eigenvalue problem, which was 
one dimension less than the original problem, to 
obtain the discrete expansion of the singularity near 
the corner. And then combined the approximation of 
the singularity and standard finite element basis 
functions to construct special finite element spaces, 
and solve the original problem in the special spaces 
on a conventional mesh. 

 
In this work we use the finite element method to 
analyze the distribution of velocity in a viscous 
incompressible fluid flow using Lagrange 
interpolation function. 

 
MATHEMATICAL FORMULATION 
Consider the relation: 

( ) ( ) 0p u u
t x y

ρ ρ∂ ∂ ∂
+ + =
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At steady state,         0
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∂
           (2)               

Thus, we have: 
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for incompressible fluids, constantρ = (   is  densityρ ), this implies that: 

0u v
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ρ
 ∂ ∂
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from the continuity expression, 
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from the conservation of linear momentum, for incompressible fluid flow we have: 
uf u u
t

σ ρ ∂ ∇ + = + ⋅∇ ∂ 
              (6) 

xy
x x
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σ
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where , ,x y xyσ σ σ  are stress components, t is Time, u is the velocity and  is the  cos  vis ityµ . , ,x y xyτ τ τ  
are viscous stress components, while p is the hydrostatic pressure 

2 , 2 ,x y xy
u v u u
x x x x

τ µ τ µ τ µ∂ ∂ ∂ ∂ = = = + ∂ ∂ ∂ ∂ 
                                (9) 

by substitution, 
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rearranging, since 

0u v
x y
∂ ∂

+ =
∂ ∂

                                                        (12) 

then,      2 x
u u v uP f

x x y y x t
µ µ ρ

  ∂ ∂ ∂ ∂ ∂ ∂ − + + + =   ∂ ∂ ∂ ∂ ∂ ∂    
   (13) 

y
u v u vP f

x y x y y t
µ µ ρ
      ∂ ∂ ∂ ∂ ∂ ∂

+ + − + + =      ∂ ∂ ∂ ∂ ∂ ∂      
  (14) 

 
Restricting the Stoke’s equation for viscous, incompressible fluid flow, we have: 
 
let       0, ( ), ( ), 0xf P P x u u y v= = = =  
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this is the reduced Stoke’s model for viscous, incompressible, steady flow. 
Now considering equation.14 

x
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thus the stoke’s model for viscous, incompressible, steady flow is 
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Developing the Velocity Distribution Model for Boundary Value Flow Problems 
 
Since the boundary value problem are described by: 

0 for 0d dua cu q x l
dy dy

 
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comparing this with the developed expression for steady state, viscous incompressible fluid flow 
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       rearranging and comparing: 
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we have            
( ),  0,  

P x
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x
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∂
= = =

∂
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Generating a finite element model for boundary value problems: 

0 for 0d dua cu q x l
dy dy

 
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where ( ) ( ) ( ) 0 0,  ,  ,   and a a y c c y q q y u Q= = =  are defined 
obtaining the weak form: 
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Integrating over the element domain: 
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substituting into equation. (20), we have: 
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obtaining the primary and secondary variable from the weak form: 
dua
dy

     secondary variable 

u        primary variable 
boundary condition assumption: 

A
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thus the variational form is: 

( ) ( )B

A

y

A A B By

d dua cwu wq dy wa y Q wa y Q
dy dy

  
+ − − −  

  
∫                     (28) 

For an arbitrary degree interpolation 
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where ( ) ( ) are the langrage interpolation of -1  degreee
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thus obtaining a general term, 
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this could be given as: 
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In matrix form we have 

{ } { } { }e e e ek u f Q  = +                                                 (37) 

Considering the governing equation for the viscous incompressible flow 

( ) ( )2

2

u y P x
y x

µ
∂ ∂

=
∂ ∂

 

from its comparison with the standard equation of a boundary value problem we have: 
( ),  0,  

P x
a c q

x
µ

∂
= = =

∂
 

 
 
Numerical Examples: To illustrate the model and its accuracy, we consider the following Examples. 
 
Example 1: Consider a parallel flow between two flat plates separated by a distance of 80m. Determine the 
velocity distribution for a velocity gradient of 5 N/m3 and fluid viscosity of u= 0.8Kg/m/s, when he velocity at 
the end of the plates is zero. 
 
Solution: Interpolation method: Lagrange Interpolation technique. Element type: Linear. The solutions obtained 
using the model are shown in Fig. 1. 
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Fig.1: A graph of velocity against displacement for 2, 4, 6, 8, 10, 12 elements and the exact. 
 
Example 2: A viscous, incompressible fluid flows between two flat and parallel plates which are 100m apart and 
at a constant pressure gradient of 12N/m3 and he fluid is of viscosity of 0.92 kg/m/s. determine its velocity 
distribution U(y) if the velocity at the wall of the plates are U= 0 m/s; Ub = 400 m/s 
 
Solution: Interpolation method: Lagrange interpolation technique.  Element type: Linear. The solutions obtained 
using the model are shown in Fig. 2. 
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Fig. 2: A graph of velocity against displacement for 2, 4, 6, 8, 10, 12 elements and exact solution 
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Example 3: Using the finite element model determine the velocity distribution U(y) of the flow of a  viscous, 
incompressible fluid flowing through  two flat and long walls that are 60m apart and has a constant pressure 

gradient 
dp
dx

of about 20N/m3  if the viscosity of the viscous incompressible fluid is 0.4kg/m/s 

 
Note: both parallel plates have zero velocity 
 
Solution: Interpolation method: Lagrange Interpolation technique. Element type: Linear. The solutions obtained 
using the model are shown in Fig. 3. 
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Fig. 3: A graph of velocity against displacement for 2, 4, 6, 8, 10, 12 elements, and the exact 

 
Solution 
Table1. Percentage difference of values between  
analytical solutions and solutions from our mode 
 for all the three Examples 
 

Node Example 
1 

Example 
2 

Example  
3 

1 0.00% 0.00% 0.00% 

2 0.44% 0.67% 0.67% 

3 0.65% 0.46% 0.45% 

4 0.23% 0.48% 0.46% 

5 0.44% 0.79% 0.72% 

6 0.72% 0.01% 0.00% 

7 0.47% 1.05% 0.79% 

8 0.27% 0.86% 0.57% 

9 0.78% 1.22% 0.62% 

10 0.71% 0.28% 1.04% 

11 0.00% 0.00% 0.00% 

12 0.82% 0.66% 1.44% 

13 1.02% 0.46% 1.23% 

14 0.41% 0.48% 0.79% 

15 0.86% 0.78% 1.17% 

16 1.57% 0.09% 0.00% 

17 1.21% 1.01% 0.62% 

18 0.93% 0.84% 1.04% 
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19 0.38% 1.16% 0.00% 

20 0.91% 0.24% 0.48% 

21 0.00% 0.00% 0.02% 

 
 
DISCUSSION  
 To illustrate the use and accuracy of the model 
developed, 3 Examples were considered and the 
solution are shown in Figures 1-3.  The solutions to 
Example 1 are shown in Fig.1. For Example 2, the 
solutions are shown in Figures 2, while Fig.3 
represents the solutions to Example 3. 
 
In Example 1, Fig.1 compares the numerical solution 
of velocity distribution for a viscous incompressible 
flow at different location between two faced plates 
and the exact solution. The result from this numerical 
technique converges towards the exact solution. The 
rate of converges increases fast as the number of 
elements increases. At the stationary plates, the fluid 
of viscosity 0.8 kg(ms)-1   has zero velocity (0 m/s), 
the flow velocity of the fluid is maximum (5000m/s), 
midway between the plates. 
 
In Example 2, the Fig. 2 shows a convergence of the 
numerical solution of velocity distribution to the 
exact solution. For the fluid with viscosity 0.92 
kg(ms)-1    and pressure gradient 12N/m3, optimal 
velocity (16504.34m/s) is noticed midway between 
the stationary and moving plates. The fluid particles 
in contact with the moving plates assumes its velocity 
(400m/s), While those in contact with the stationary 
plates are at ‘zero velocity’. It must be noted that the 
numerical technique described above gives the same 
velocity as the ‘exact value’ at nodal points. 
 
In Example 3, Fig.3 shows the numerical solution of 
velocity distribution of a viscous incompressible fluid 
of viscosity 0.4kg (ms)-1    and pressure gradient 20 
N/m3 at different location between the two fixed 
plates and the exact solution, for different number of 
finite elements. The results, as shown in the Figure 
using the technique converge fast towards the exact 
solution. The velocity of fluid flow assumes a 
maximum value of 22500m/s midway between both 
plates, and a ‘zero’ value at the location of the plates. 
 
Table 1, shows the percentage difference of values 
between analytical solutions and solutions from our 
model for all the three Examples. A maximum 
percentage difference of 1.44% and a minimum 
difference of 0.0% between analytical solutions and 

the model were obtained. These results show that the 
solutions obtained using this model are highly 
accurate. 

 
Conclusion: In this work we have used the finite 
element method (with the Lagrange interpolation 
function) to analyze the distribution of velocity, in 
viscous incompressible fluids. The model developed 
is highly accurate, as shown by the results obtained.  
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