
 

*Corresponding author 

JASEM ISSN 1119-8362 
 All rights reserved 

 

 

J. Appl. Sci. Environ. Manage. June, 2007 

Vol. 11 (2) 209 - 214 
Full-text Available Online at 

 www.bioline.org.br/ja  
 

Effects of permeability and radiation on the stability of Couette flow in a porous 
medium 

 
*1ALALIBO .T. NGIANGIA; 2WONU NDUKA 

 
1Department of Physics, 2Department of Mathematics, Rivers State College of Education, Rumuolumeni, Port Harcourt, Nigeria.  

 
ABSTRACT: A study on the effects of permeability and radiation on the stability of couette flow in a porous 
medium was carried out. The pressure differential of the equation of motion is kept constant in the Navier-Stokes 
equation and solution developed by the method of undetermined coefficients.It was observed that radiation and 
permeability has, independently destabilizing effect on the stability of couette flow. At high wave numbers (a ≤  
10) and Reynolds number (Re ≥ 2500), instability sets in but at wave numbers (a≤ 5) stability was not affected. 
However, within the same range of values, radiation effect was prominent.  @JASEM    

 
Couette flow results when two plates moving relative 
to each other cause a flow of fluid in between them. 
the plates could be flat, parallel or two concentric 
cylinders of varying radii.  The stability of Couette 
flow problem dates back to the early investigation by 
Lord Rayleigh (1926) and subsequently, Taylor 
(1923) investigated the steady circular flow of a fluid 
between two rotating coaxial cylinders. In their 
findings, comparisons for the ratio N of 0.9 and 
Reynolds number (Re) up to 350, showed that an 
average axial velocity distribution and the exact axial 
distribution yield similar prediction with Taylor 
number. Also the Taylor number and the 
corresponding critical wave number differ markedly 
from previous narrow-gap prediction based on a 
parabolic approximation to the axial distribution. 
Chandrasekhar (1953, 1961) and Lin (1955) studied 
the case when the fluid is an electrical conductor and 
a magnetic field along the common axis of the 
cylinders confirmed the findings of Lord Rayleigh 
and Taylor that turbulence is driven by 
Magnetorotational instabilities.  
 
Ng and Tuner (1981) made a numerical study of the 
effects of both axisymmetric and non-axisymmetric 
disturbances on the stability of spiral flow between 
rotating cylinders and found that the onset of 
instability depends on both the Taylor number and the 
axial Reynolds number. They also found out that for 
sufficiently high Reynolds number, there are two 
distinct axisymmetric modes corresponding to the 
usual shear and rotational instabilities and the 
stability boundaries for non-axisymmetric disturbance 
for Reynolds number (Re) ≤ 6000, for ratio of inner 
and outer radii R1/R2  = 0.95 with ratio of inner and 
outer angular speeds of the cylinder Ω 1/ Ω 2 = 0 

was obtained. Takhar, et al (1992) carried out an 
investigation on the effects of radial temperature 
gradient and axial magnetic field on the stability of 
Couette flow and found that temperature gradient 
affects the stability of the flow and simple 
axisymmetric instability occurs if the magnetic field 
is purely axial. It was also reported that in an ideal 
magnetohydrodynamics (MHD) fluid, the maximum 
growth rate is independent of the field strength. 
Recently an excellent investigation on the effect of 
axisymmetric stability on magnetorotational 
instability (MRI) of dissipative Couette flow was re-
examined by Goodman and JI (2002) with emphasis 
on flows that would be hydrodynamically stable 
according to Rayleigh’s criterion. This in comparison 
to the findings of Velikhov (1959) and Chandrasekhar 
(1960) that turbulence and orbital decay are driven by 
magnetorotational instabilities. The former also 
observed that exchange of stability appears to occur 
through marginal nodes but magnetic eigen functions 
are smooth and obey a fourth order differential 
equation in the inviscid limit. In all these works, 
studies of the attendant fluid flow characteristics in a 
porous media have been scanty and the existing 
investigations have often taken the assumption of a 
fully developed flow so that only a single space co-
ordinate is involved in the analysis, Raptis et al 
(1981a). 
 
This poses a fundamental linkage problem from the 
standpoint of basic research in stable fluid flow hence 
the study of the fluid flow in free space and in 
Cartesian coordinate system. Though radiation is 
been considered as reported by many research papers, 
permeability has often been neglected and little 
attention was given to the combined effect of the 
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presence of permeability and radiation that are of 
interest in Structural engineering, Petroleum  
engineering, Geophysics and Geology just to mention 
but a few. It is reported that both permeability and 
radiation has independently destabilizing effect on the 
stability of Couette flow. 0ur goal is to examine the 
stability or otherwise 0f the presence of radiation and 
permeability on couette flow phenomena. 
 
MATHEMATICAL FORMULATION  
We consider the two dimensional steady heat flow of 
fluid in a horizontal porous medium in the Cartesian 
coordinate system such that  t is the time. If u is the 
velocity component, then the equation of continuity 
and Navier-Stokes as well as energy is given by; 
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Where P is pressure, ρ is fluid density, g is 

acceleration due to gravity, µ is absolute viscosity, T 

is temperature, 
vc

Ka
ρ

=2
     is thermal diffusivity 

and ∇ is a del operator.  

Considering the problem of a horizontal layer of fluid 

being heated from below, for us to investigate the 

effect of permeability and radiation on the stability of 

the system, we insert  u
k
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    and ( )0TT −δ where 

ϑ  is kinematics viscosity, k is permeability of the 
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α k* is absorption coefficient,  

K* is frequency of radiation in equation (2) and (3) 
respectively, we get  
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Perturbation: Denoting the disturbance in the 
velocity, temperature and pressure field by  
 

,1
0 UUU += ,1TTT e +=  and ,1PPT e +=

 (6) 
 
Where subscript e denotes equilibrium position.  
Substituting equation (6) into equations (1), (4) and 
(5) and neglecting all items that may involve products 
and squares of perturbation quantities, we obtain the 
following linearized equations.  
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for fluid at constant density ( ρ ) 
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In steady state, equation (8) and (9) can be written as; 
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Non- Dimensional Analysis: Using the following 
dimensional quantities  
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equations (7), (10) and (11) can be re-written as  
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Analytical Solution: Following equation (13), we 
assume a solution of the form 
  

xAeλθ =     (14) 
 
and imposing the boundary condition, ( ) 00 =θ  we 
arrive at the feasible solution as  
     

( ) xx
β
αθ sin=   (15) 

 
where B is constant of integration.  
 
 

The solution of equation (12) can be determined if 

changes in fluid density depends only on temperature 

as illustrated by the Boussinesq approximation 

( )00 TTE −−=∆ ρρ where; ρ∆  is little change in 

fluid density, 0ρ is fluid density at some properly 

chosen 0T , 0T  is temperature at which 0ρρ =  and 

E is coefficient of volume expansion.  

The Boussinesq approximation can take the form  

θρρ E0−=∆   (15a) 

Substituting equations (15) and (15a) in (12) where 

ρ  is the perturbed fluid density,  
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If we assume that 
x
P
∂
∂

 is pk−  (constant) a 

pressure gradient, also for  
            
simplicity ZEgB =0ρ  and rearrangement, equation 
(16) can be written as 
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The complete solution of equation (17) is  
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The boundary condition is satisfied by the assumption that the fluid velocity at the well of the plates must be 
equal to the wall velocity. The boundary condition is therefore satisfied by U(0) = 0,  U(d) = U. Imposing these 
boundary conditions in (18) results in 
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For Kp = 0  
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Analysis into Normal Modes:  We examine the stability of each of these modes individually following the 
method of Chandrasekhar (1963), Bestman (1988) and Opara (1989). For the problem at hand, the analysis can 
be made in terms of two dimensional periodic wave numbers. Thus we assign to all quantities describing the 
perturbation a dependence on z, y and t in the form 
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Where n is a time constant and (K2

y + K2
z)½ is given as K1, the resultant wave number of the disturbance.  

 Also, introducing the following non- dimensional variables  kda = ,  σ   = n d2
 k 

 
We write; 
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Substituting equation (22) into equations (1), (4) and (5), following Hocking (1958), Bestman and Opara (1990) 
and eliminating pressure, we obtain;  
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Coupling equation (23) and 24 following Opara (1994) 
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a is the resultant dimensional wave number and R is 
ϑ

α
K
Edg 4

 , the  

           
Rayleigh number. To find the critical value of R as a function of a, we set  σ  = 0 equation (25) becomes;  
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Following Opara (1994), by differentiating equations (23) and (24) even number of times, we successively 
conclude that all the even derivatives of U,  θ  must vanish for x = 0 or 1. Therefore, the proper solution for U, 
θ  appropriate for the lowest mode is;                

xAxAU πθπ sin,sin ==      (27) 
Substituting equation (27) in equations (23) and (24) we obtain after simplification.  
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RESULTS 
 
Kp=2, Ko=1, x= 1-5, u=1, z=1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The dependence of the velocity on both the direction x and   the Reynolds’ number Re 
 

 
Fig. 2. Differential pressure kept at zero in figure 1. 
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Fig. 1 shows that at any fixed Reynolds’ number, 
discrepancy exist in the mean curve of the theoretical 
description of Couette flow caused by the differential 
temperature  and permeability .At Reynolds’  number 
zero, there appears  no  curve  on fig.2 which is in 
accord with  those of  Walowit et al (1964)  for the 
stability of Couette  flow at zero Reynolds’ Number 
over  the  range of radius  0.9>N>0.1. 
The solution of (13) is also in line with the findings of 
Takhar, Ali and Soundalgekar (1992) that temperature 
gradients affects the  stability of  Couette flow. 
Stability is maintained at small wave numbers regime 
(0.1≤ a ≥ 5)  with Ko = 0.2 and α  = 0.4, however the 
situation is reversed at high wave number (a ≥10) with 
Ko = 0.2 and radiation increased to 20.5. Also at high 
wave number with α  = 0.4 and permeability 
increased up to 10 shows a considerable agreement 
with the work of NG and Turner (1981) and Takeuchi 
and Jankowski (1981).   

 
Comparison of fig. 2 with the work of Hanson and 
Martin (1975) shows similarity in the shapes of the 
curves but complete reversal at very high Reynolds’ 
number and low Reynold’s number regime. However, 
we observed that at high Reynold’s number (Re- 
2500) and wave number (a > 10), instability sets in as 
the fluid progresses in the presence of permeability 
and radiative heat.  

 
Conclusion: In view of the geometry in which the 
fluid flows, porosity and differential temperature must 
be overcome to demonstrate stable flow of fluid. 
Equation (19) as a general case is a superposition of 
Couette flow and Poiseuile flow. The Couette flow 
was realized from equation (19) by setting Kp = 0. The 
fluid flow considered using the Cartesian coordinate 
system from our presentation, extends to infinity in 
the x direction and are two dimensional hence difficult 
to realize in application but being fundamental,  it 
forms the basis and are often used as good 
approximations. If the geometry is cylindrical, then 
the cylindrical coordinate system is most suitable 
owing to the boundaries of the flow field because the 
axial direction of flow extends to infinity but changes 
in flow quantities in axial direction must be periodic 
so that these quantities do not take on infinite values 
at infinity.   
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