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ABSTRACT: Predicting the pressure at the wellbore in bounded circular reservoir has been the hub in the study of 

Reservoir Engineering. Predicting the pressures outside the reservoir was not an easy task. The Ei function method has been the 

only method for determining the pressure outside the wellbore of a bounded circular reservoir. The disadvantage of the Ei 

function method is that it involves rigorous iterations. This study sorts to use another approach to determine the pressure within 

and outside the wellbore at a glance. The finite element method was used in this study. The reservoir domain was divided into 

smaller subdomains and analysed. The results from these subdomains were assembled to represent pressure in the entire 

reservoir. The results obtained where shown tabular form (dimensionless pressure and dimensionless time) for dimensionless 

radii of 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, and 10. It was shown that the relationship between dimensionless pressure and 

dimensionless time was linear. The result obtained at the wellbore was compared with the results obtained by Van Everdigen and 

Hurst. It was shown that there was a strong positive correlation between the results. ©JASEM 

http://dx.doi.org/10.4314/jasem.v20i4.11 

Keywords: Bounded circular reservoir, constant terminal rate, dimensionless variables, diffusivity equation, 

and Crank-Nicholson scheme. Nomenclature 

 

B  Formation volume factor, 

RB/STB 

c  Compressibility, psia
-1 

h  Thickness, ft 

K  Stiffness matrix 

k  Permeability, md 

M  Mass matrix 

n  Number of elements 

P  Pressure, psi 

DP  Dimensionless pressure 

•

DP  Dimensionless pressure rate 

iP   Initial reservoir pressure, psi 

Q  Terminal flow rate 

q  Volumetric flow rate, STB/D 

r  Radius, ft 

Dr  Dimensionless radius 

er  External radius, ft 

eDr  Dimensionless external 

radius 

wr  Wellbore radius, ft 

s  Time step, hr 

t  Time, hr 

Dt  Dimensionless time 

w  Weight function 

∀  For all 

Greek letters 

t∆  Time increment, hr 

α  Family of approximation 

φ  Porosity, fraction 

µ  Viscosity, cp 

π  Pi 

ψ  Interpolation function 

 

Understanding the trend of pressure profile in a 

reservoir during primary depletion is essential in 

reservoir studies. Especially, for those reservoirs 

which are susceptible to perform two phases of 

hydrocarbon due to pressure drop (Danesh, 1998). 

In this regard, any precise approach and model 

which include less assumption can be a reliable 

method. The fluid flow in reservoir or in porous 

medium has been a great interest of physicists, 

engineers and hydrologists who tried to predict the 

behaviours of compressible and incompressible 

fluids. They have designed several experiments so 

as to validate the implementation of their proposed 

correlations (Ahmed and McKinney, 2011). The 

basic equation for predicting pressure distribution 

in a reservoir is the diffusivity equation. For this 

equation, the reservoir temperature is supposed to 

be constant which is a valid assumption in most 

cases. 

Several methods have proposed to solve the 

diffusivity equation including numerical and 

analytical approaches. The diffusivity equation has 

been solved in dimensionless form (Lee and 

Wattenbarger, 1996). Chakrabarty et al. (1993) 

provided a quantitative analysis of the effects of 

neglecting the quadratic gradient term on solving 

the diffusion equation governing the transient state. 

It should be noted that among the flow regimes in 

reservoir, the transient flow is the most significant 

state upon which such important characteristics 

such as permeability, reservoir capacity, and skin 

factor can be determined using well test analysis 

(Van Everdingen, 1953; Lee, 1992) 
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Transient pressure response for a well producing 

from a finite reservoir of circular, square, and 

rectangular drainage shapes has been studied by 

Van Everdigen and Hurst (1949); Miller et al. 

(1950); Aziz and Flock (1963); Earlougher et al. 

(1968); Ramey and Cobb (1971); Kumar and 

Ramey (1974); Cobb and Smith (1975); and Chen 

and Brigham (1978) among others. Van 

Everdingen and Hurst presented the solution to 

diffusivity equation in eq. 8 in the form of infinite 

series of exponential terms and Bessel functions. 

The authors evaluated this series for several values 

of eDr  over a wide range of values for Dt . Chatas 

(1953) and John (1982) conveniently tabulated 

these solutions for the following two cases: 

Infinite-acting reservoir and Finite-radial reservoir. 

Mishra and Ramey (1987) presented a buildup 

derivative type curve for a well with storage and 

skin, and producing from the centre of a closed, 

circular reservoir. Their type-curve applies for 

large producing times. The work by Ambastha and 

Ramey (1988) presents drawdown and buildup 

pressure derivative type-curves for a well 

producing at a constant rate from the centre of a 

finite, circular reservoir. The outer boundary may 

be closed, or at a constant pressure. The differences 

between the responses for a well in a closed, 

circular reservoir (fully developed field), and a 

well in a circular reservoir with a constant-pressure 

outer boundary (active edge water drive system, or 

developed five-spot fluid-injection pattern) were 

discussed. Design relations were developed to 

estimate the time period which corresponds to 

infinite-acting radial flow, or to a semi-log straight 

line on a pressure vs. logarithm of time graph. 

Producing time effects on buildup responses were 

studied using the slope of a dimensionless buildup 

graph proposed in Agarwal (l980). 

In all the literature reviewed so far, none has been 

able to predict reservoir pressure outside the well 

bore. To this end, this work sort to predict the 

reservoir pressure both within and outside the 

wellbore using the finite element method. 

Theory: The law of conservation of mass, Darcy’s 

law and the equation of state has been combined 

to obtain the following partial differential 

equation: 

t

P

k

c

r

P

rr

P

∂

∂
=

∂

∂
+

∂

∂

000264.0

1
2

2 φµ
 (1) 

with the assumptions that compressibility, c 

is small and independent of pressure, P; 

permeability, k, is constant and isotropic; 

viscosity, µ , is independent of pressure; 

porosity, φ , is constant; and that certain 

terms in the basic differential equation 

(involving pressure gradients squared) are 

negligible. This equation is called the 

diffusivity equation and the term 

k

c

000264.0

φµ
 is the inverse of the 

diffusivity constant, η . 

In this work, the diffusivity equation was 

analysed for bounded circular reservoirs, the 

case in which the well is assumed to be 

located in the centre of a cylindrical 

reservoir with no flow across the exterior 

boundary and also the case of constant 

external boundary. 

 

Governing Equation 

t

P

k

c

r

P

rr

P

∂

∂
=

∂

∂
+

∂

∂

000264.0

1
2

2 φµ
 

Initial and boundary conditions: 

i. iPP =  at t = 0 ∀  r  (2) 

ii. 
kh

qB

r

P
r

wr
π

µ

2
=









∂

∂
 for t > 0 (3) 

iii. 0=








∂

∂

cr
r

P
 ∀  t  (4) 

 

Dimensionless Variables: The above 

equations incorporate physical parameters 

such as permeability, and it would be futile to 

solve this problem for a particular 

combination of values for these parameters. 

Dimensionless variables are designed to 

eliminate the physical parameters that affect 

quantitatively, but not qualitatively, the 

reservoir response. The above equations are 

in Darcy units, and the dimensionless terms 

will render the system of units employed 

irrelevant. For this line source model, 3 

dimensionless variables are required. In US 

Oilfield units, distance, time and pressure are 

replaced as follows: 

 

 

 

Dimensionless time: 

2

0002637.0

w

D
cr

kt
t

φµ
=   (5) 
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Dimensionless distance:                                        

w

D
r

r
r =    (6) 

Dimensionless pressure:

( )PP
qB

kh
P iD −=

µ2.141
 (7) 

 

By defining dimensionless pressure and 

dimensionless time in this way, it is possible to 

create an analytical model of the well and 

reservoir, or theoretical ‘type-curve’, that provides 

a ‘global’ description of the pressure response that 

is independent of the flow rate or of the actual 

values of the well and reservoir parameters. Eq.1 

can be transformed by substituting the following 

dimensionless variables in Eqs. 5-7 into eq. 1 and 

this becomes: 

D

D

D

D

DD

D

t

P

r

P

rr

P

∂

∂
=

∂

∂
+

∂

∂ 1
2

2

 (8) 

and the boundary and initial conditions become: 

1. Dimensionless initial condition: 

Uniform pressure in the reservoir 

( ) 00, ==DDD trP   (9) 

2. Dimensionless inner boundary condition: 

Constant rate at the well 

( ) 1,1 −=
∂

∂
D

D

D t
r

P
  (10) 

3. “No Flow” boundary: 

No flux across the reservoir 

( ) 0, =
∂

∂
DeD

D

D tr
r

P
  (11) 

Eq. 8 can also be written in a condensed 

form as: 

D

D

D

D

D

DD t

P

r

P
r

rr ∂

∂
=









∂

∂

∂

∂1
 (12) 

 

Assumptions; The assumptions used in proposing 

a solution to the diffusivity equation is as follows: 

• The well is producing at constant flow rate. The 

reservoir is at uniform pressure, iP  when 

production begins. 

• The well, with a wellbore radius of wr  is 

centred in a cylindrical reservoir of radius

eDr . 

• No flow across the outer boundary, i.e., at r. 

The diffusivity equation was analysed for 

bounded circular reservoirs. 

 

Finite Element Formulation: Weak 

Formulation: In the development of the 

weak form, we assumed a quadratic element 

mesh and placed it over the domain and 

applied the following steps: 

From eq. 12, we have: 

 

0
1

=

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
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

∂
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∂

∂
−
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DDD
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r

P
r

rrt

P
 (13) 

 

Multiply eq. 13 by the weight w  function 

and integrate the final equation over the 

domain. 

∫ =
















∂

∂

∂

∂
−

∂

∂

v D

D

D

DDD

D dv
r

P
r

rrt

P
w 0

1
 (14) 

 

Eq. 14 becomes, 

0
1

1

0
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=









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P
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P
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    (15) 

Integrating eq. 15 with respect to z , thenθ , 

over the limits, we have: 

0
1
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



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
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D drr
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P
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P
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    (16) 

 

Eq. 16 can be exploded into: 

0=








∂

∂

∂

∂
−

∂
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D

D
D

D

r

r

DD

D

D dr
r

P
r

r
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t

P
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    (17) 

Integrating eq. 17 by part, we have: 
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    (18) 

Grouping eq. 18 into linear and bilinear 

components, we have: 
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Where 

D

D

D
r

P
rQ

∂

∂
=  

 

Interpolation Function: The weak form in eq. 20 

requires that the approximation chosen for DP  

should be at least quadratic in Dr  so that there are 

no terms in eq. 20 that are identically zero. Since 

the primary variable is simply the function itself, 

the Lagrange family of interpolation functions is 

admissible. We proposed that DP  is the 

approximation over a typical finite element 

domain by the expression: 

( ) ( ) ( ) ( )D

e

i

n

j

D

e

jDDjDDD rwandrtPtrP ψψ ==∑
=1

,

    (21) 

 

Substituting eq. 21 into eq. 20, we have: 
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Factor out ∑
=

n

j

DjP
1  
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Where 

D

D

Dj
dt

dP
P =

•

 

In matrix form we can represent the semi-discrete 

finite element model thus,

[ ]{ } [ ] { }e

iDj

e

ijD

e

ij QPMPK =






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+
•

 (24) 

Where 

∫=
DB
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r

r
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ij dr
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dr

d
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ψψ
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∫=
DB

DA

r

r

D

e

j

e

iD

e

ij drrM ψψ   (26) 

 

Using Quadratic Lagrange Interpolation 

functions for a quadratic element: 

( ) ( )( )
AA rrhrrh

h
r 22

1
21 +−−+=ψ

 (27) 

 

( ) ( )( )rrhrr
h

r AA −+−=
22

4
ψ   

  (28) 

 

( ) ( )( )
AA rrhrr

h
r 22

1
23 +−−

−
=ψ  

    (29) 

The coefficient matrix can be easily derived 

by substituting the Lagrange interpolation 

functions into eq. 25 respectively. The 

matrices are shown below: 
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Also, the mass matrices can be easily 

derived by substituting the Lagrange 

interpolation functions into eq. 27 

respectively. The matrices are shown below: 

 

[ ]
















++−−

++

−−+

=

AAA

AAA

AAA

e

rhrhrh

rhrhr

rhrrh
h
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4432164

248

60

    (31) 

 

Using four quadratic elements, 

( )hnrr wA 1−+=   (32) 

In this analysis, we have withheld the 

computational details of the shape assembly 

of the finite element analysis (FEA) used. 

However, the authors would be glad to 

interact with researchers who may want to 

refer to the computational mathematics 

involved. 

 

 

Time Approximation: Recalling eq. 24, 
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[ ]{ } [ ] { }e

iDj

e

ijD
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
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+
•

 

For a given time step s, eq. 24 becomes 

  [ ]{ } [ ] { }
s

e
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s

Dj
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e
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
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     (33) 

For the next time step s+1, eq. 25 becomes 
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Multiply eq. 33 by ( )α−1  and eq. 34 byα , then we add the two resulting equations, 
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The α  family of interpolation for time consideration is given as: 
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Substitute eq. 36 into eq. 35 and using the Crank-Nicholson Scheme where
2

1=α , 
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From the initial condition given in eq. 9 for a constant terminal rate case, it implies that when 0=s , i.e., 

initial time, all dimensionless pressure in the reservoir will be zero. Also, the flow rate was constant all 

through operation. This means that { } { }
1+

=
s

e

is

e

i QQ  .Hence, eq. 38 becomes: 
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RESULTS AND DISCUSSION 
This condition is applicable to bounded reservoirs. 

This is to say that the reservoir has been producing 

for a sufficient period of time so that the effect of the 

pressure disturbance has been felt in the outer 

boundary. In that case, the influence of the reservoir 

boundaries or the shape of the drainage area has 

effect on the rate at which the pressure disturbance 

spreads in the reservoir. It is therefore considered that 

the well acts as if it is surrounded at its outer 

boundary, by a solid "brick wall" which prevents the 

flow of fluids into the radial cell of the reservoir. This 

“brick wall” can either be in the form of a fault 

bringing about variation in the permeability of the 

walls of the reservoir or a high degree of anisotropy. 

Furthermore, if the well is producing at a constant 

flow rate then the cell pressure will decline in such 

a way that the change in pressure with time will be 

approximately costant for all radius and time. 

Eq. 39 was analysed to determine the various results 

obtained in the course of this study. The results 

obtained from this analysis have been presented in 

the form of tables of dimensionless pressure against 

dimensionless time. This is shown in Table 1. This 

table comprises of different radial values of 

dimensionless radius. From the Table 1, it was 

observed that the graph did not start from the point 

where the dimensionless time was zero. The reason 

was that when the reservoir is opened, the reservoir 

will act as if it was infinite in size. At these points, 
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the behaviour of the reservoir is different from its 

behaviour when it was finite in size. Therefore, these 

regions were not captured in this part of the analysis. 

When the pressure disturbance in now felt by the 

external boundary of the formation, the reservoir at 

this point behaves as if there is no flow of fluid into 

it. As this happens, the pressure in the reservoir 

begins to drop. These results presented in Table 1 are 

the dimensionless pressure at the well bore of the 

reservoir. 

 
Table 1: Dimensionless time against dimensionless pressures and different dimensionless radii 

reD=1.5 reD=2 reD=2.5 reD=3 reD=3.5 reD=4 reD=4.5 

tD PD tD PD tD PD tD PD tD PD tD PD tD PD 

0.06 0.2500 0.22 0.4430 0.40 0.5650 0.52 0.6260 1.00 0.8020 1.5 0.9270 2.0 1.0220 

0.08 0.2880 0.24 0.4600 0.42 0.5760 0.54 0.6360 1.10 0.8310 1.6 0.9480 2.1 1.0390 

0.10 0.3220 0.26 0.4760 0.44 0.5870 0.56 0.6450 1.20 0.8570 1.7 0.9680 2.2 1.0550 

0.12 0.3550 0.28 0.4920 0.46 0.5980 0.60 0.6620 1.30 0.8830 1.8 0.9880 2.3 1.0710 

0.14 0.3870 0.30 0.5070 0.48 0.6080 0.65 0.6830 1.40 0.9070 1.9 1.0060 2.4 1.0860 

0.16 0.4200 0.32 0.5220 0.50 0.6180 0.70 0.7030 1.50 0.9300 2.0 1.0240 2.5 1.1010 

0.18 0.4520 0.34 0.5370 0.52 0.6280 0.75 0.7220 1.60 0.9520 2.2 1.0590 2.6 1.1160 

0.20 0.4840 0.36 0.5510 0.54 0.6380 0.80 0.7400 1.70 0.9740 2.4 1.0920 2.7 1.1300 

0.22 0.5160 0.38 0.5650 0.56 0.6470 0.85 0.7570 1.80 0.9940 2.6 1.1230 2.8 1.1440 

0.24 0.5480 0.40 0.5790 0.58 0.6570 0.90 0.7740 1.90 1.0150 2.8 1.1540 2.9 1.1570 

0.26 0.5800 0.42 0.5930 0.60 0.6660 0.95 0.7900 2.00 1.0350 3.0 1.1830 3.0 1.1700 

0.28 0.6120 0.44 0.6070 0.65 0.6880 1.00 0.8050 2.25 1.0830 3.5 1.2550 3.2 1.1960 

0.30 0.6440 0.46 0.6210 0.70 0.7100 1.20 0.8650 2.50 1.1300 4.0 1.3240 3.4 1.2210 

0.35 0.7240 0.48 0.6340 0.75 0.7310 1.40 0.9200 2.75 1.1770 4.5 1.3920 3.6 1.2450 

0.40 0.8040 0.50 0.6480 0.80 0.7520 1.60 0.9730 3.00 1.2220 5.0 1.4590 3.8 1.2690 

0.45 0.8840 0.60 0.7150 0.85 0.7720 2.00 1.0760 4.00 1.4010 5.5 1.5260 4.0 1.2920 

0.50 0.9640 0.70 0.7820 0.90 0.7920 3.00 1.3280 5.00 1.5800 6.0 1.5930 4.5 1.3480 

0.55 1.0440 0.80 0.8490 0.95 0.8120 5.00 1.8280 6.00 1.7570 6.5 1.6600 5.0 1.4030 

 

Table 1: Contd 

reD=5 reD=6 reD=7 reD=8 reD=9 reD=10 

tD PD tD PD tD PD tD PD tD PD tD PD 

3.0 1.1660 4.0 1.2730 6.0 1.4330 8.0 1.5500 10.0 1.6430 12.0 1.7190 

3.1 1.1790 4.5 1.3200 6.5 1.4660 8.5 1.5770 10.5 1.6640 12.5 1.7370 

3.2 1.1910 5.0 1.3620 7.0 1.4980 9.0 1.6010 11.0 1.6850 13.0 1.7550 

3.3 1.2030 5.5 1.4012 7.5 1.5280 9.5 1.6250 11.5 1.7050 13.5 1.7720 

3.4 1.2140 6.0 1.4390 8.0 1.5560 10.0 1.6480 12.0 1.7240 14.0 1.7880 

3.5 1.2260 6.5 1.4750 8.5 1.5830 10.5 1.6700 12.5 1.7420 14.5 1.8040 

3.6 1.2370 7.0 1.5090 9.0 1.6090 11.0 1.6910 13.0 1.7600 15.0 1.8200 

3.7 1.2480 7.5 1.5420 9.5 1.6350 11.5 1.7120 13.5 1.7778 15.5 1.8350 

3.8 1.2590 8.0 1.5740 10.0 1.6590 12.0 1.7320 14.0 1.7950 16.0 1.8500 

3.9 1.2690 8.5 1.6050 11.0 1.7070 12.5 1.7510 14.5 1.8110 17.0 1.8780 
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4.0 1.2800 9.0 1.6360 12.0 1.7530 13.0 1.7710 15.0 1.8270 18.0 1.9050 

4.2 1.3000 9.5 1.6660 13.0 1.7980 13.5 1.7890 16.0 1.8590 19.0 1.9310 

4.4 1.3200 10.0 1.6960 14.0 1.8412 14.0 1.8080 17.0 1.8890 20.0 1.9570 

4.6 1.3390 11.0 1.7550 15.0 1.8850 14.5 1.8260 18.0 1.9180 22.0 2.0050 

4.8 1.3590 12.0 1.8130 16.0 1.9280 15.0 1.8440 19.0 1.9470 24.0 2.0520 

5.0 1.3770 13.0 1.8710 17.0 1.9700 17.0 1.9130 20.0 1.9750 26.0 2.0960 

5.5 1.4230 14.0 1.9290 18.0 2.0120 19.0 1.9800 22.0 2.0290 28.0 2.1400 

6.0 1.4680 15.0 1.9860 19.0 2.0550 21.0 2.0460 24.0 2.0820 30.0 2.1830 

 

The results obtained from this analysis were seen to agree with those already existing in literature. To test for 

the degree of accuracy, a percentage error between the FEM solutions and the Van Everdigen and Hurst 

solutions was conducted. The result shows a strong positive correlation between the two results. 

 

As stated earlier, the results presented in Table 1 are the dimensionless pressure at the well bore at different 

dimensionless time. But when a pressure disturbance is created in a reservoir from the well bore, it is not only 

felt at the well bore but it travels through the entire reservoir to the external boundary. The dimensionless 

pressure at the external boundary tells us how well the reservoir is been recharged and how the reservoir 

pressure is been dropped. Therefore, it is important to know how this pressure disturbance affects other points 

of the reservoir at the same time. Thus, this analysis also presents change in dimensionless pressure with 

dimensionless time at different points within the reservoir at the same time. These are presented in Tables 2 to 

3. It was observed that the dimensionless pressure decreases from the well bore to the external boundary of the 

reservoir. What this means in actual sense is that the actual pressure in the reservoir increases from the well 

bore to external boundary. 

 

Table 2: Dimensionless Pressure Distribution for 5.1=eDr , 4=n  and 005.0=∆t  under the “No Flow” 

outer boundary condition 
   rD 

tD 1.0000 1.0625 1.1250 1.1875 1.2500 1.3125 1.3750 1.4375 1.5000 

0.06 0.250 0.194 0.147 0.111 0.082 0.062 0.048 0.040 0.037 

0.08 0.288 0.231 0.183 0.145 0.115 0.092 0.077 0.068 0.065 

0.10 0.322 0.265 0.217 0.178 0.147 0.124 0.108 0.098 0.095 

0.12 0.355 0.297 0.249 0.210 0.179 0.156 0.139 0.130 0.127 

0.14 0.387 0.330 0.282 0.242 0.211 0.187 0.171 0.161 0.158 

0.16 0.420 0.362 0.314 0.274 0.243 0.219 0.203 0.193 0.190 

0.18 0.452 0.394 0.346 0.306 0.275 0.251 0.235 0.225 0.222 

0.20 0.484 0.426 0.378 0.338 0.307 0.283 0.267 0.257 0.254 

0.22 0.516 0.458 0.410 0.370 0.339 0.315 0.299 0.289 0.286 

0.24 0.548 0.490 0.442 0.402 0.371 0.347 0.331 0.321 0.318 

0.26 0.580 0.522 0.474 0.434 0.403 0.379 0.363 0.353 0.350 

0.28 0.612 0.554 0.506 0.466 0.435 0.411 0.395 0.385 0.382 

0.30 0.644 0.586 0.538 0.498 0.467 0.443 0.427 0.417 0.414 

0.35 0.724 0.666 0.618 0.578 0.547 0.523 0.507 0.497 0.494 

0.40 0.804 0.746 0.698 0.658 0.627 0.603 0.587 0.577 0.574 

0.45 0.884 0.826 0.778 0.738 0.707 0.683 0.667 0.657 0.654 

0.50 0.964 0.906 0.858 0.818 0.787 0.763 0.747 0.737 0.734 

0.55 1.044 0.986 0.938 0.898 0.867 0.843 0.827 0.817 0.814 

0.60 1.124 1.066 1.018 0.978 0.947 0.923 0.907 0.897 0.894 

0.65 1.204 1.146 1.098 1.058 1.027 1.003 0.987 0.977 0.974 

0.70 1.284 1.226 1.178 1.138 1.107 1.083 1.067 1.057 1.054 

0.75 1.364 1.306 1.258 1.218 1.187 1.163 1.147 1.137 1.134 

0.80 1.444 1.386 1.338 1.298 1.267 1.243 1.227 1.217 1.214 
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Table 3: Dimensionless Pressure Distribution for 10=eDr , 4=n  and 005.0=∆t under the “No Flow” 

outer boundary condition 
     rD 

tD 1.0000 2.1250 3.2500 4.3750 5.5000 6.6250 7.7500 8.8750 10.0000 

12.0 1.719 0.999 0.616 0.387 0.241 0.150 0.095 0.066 0.058 

12.5 1.737 1.017 0.632 0.401 0.253 0.159 0.103 0.073 0.064 

13.0 1.755 1.034 0.648 0.414 0.264 0.169 0.111 0.081 0.071 

13.5 1.772 1.050 0.663 0.428 0.276 0.178 0.119 0.088 0.078 

14.0 1.788 1.066 0.677 0.441 0.287 0.188 0.128 0.096 0.086 

14.5 1.804 1.082 0.692 0.454 0.298 0.198 0.136 0.103 0.093 

15.0 1.820 1.097 0.706 0.466 0.309 0.208 0.145 0.111 0.101 

15.5 1.835 1.111 0.720 0.479 0.320 0.218 0.154 0.119 0.109 

16.0 1.849 1.126 0.733 0.491 0.332 0.227 0.163 0.128 0.117 

17.0 1.878 1.153 0.759 0.515 0.353 0.247 0.181 0.145 0.133 

18.0 1.905 1.180 0.785 0.539 0.375 0.267 0.199 0.162 0.151 

19.0 1.931 1.206 0.809 0.562 0.396 0.287 0.217 0.180 0.168 

20.0 1.957 1.231 0.833 0.585 0.418 0.307 0.236 0.198 0.186 

22.0 2.005 1.279 0.880 0.629 0.460 0.347 0.275 0.235 0.223 

24.0 2.052 1.325 0.924 0.672 0.501 0.387 0.313 0.273 0.261 

26.0 2.096 1.369 0.968 0.715 0.543 0.427 0.353 0.312 0.299 

28.0 2.140 1.412 1.011 0.757 0.584 0.467 0.392 0.351 0.338 

30.0 2.183 1.455 1.053 0.798 0.625 0.507 0.432 0.390 0.377 

32.0 2.225 1.497 1.095 0.839 0.665 0.548 0.472 0.430 0.417 

34.0 2.267 1.539 1.136 0.880 0.706 0.588 0.512 0.470 0.457 

36.0 2.308 1.580 1.177 0.921 0.747 0.628 0.552 0.510 0.497 

38.0 2.349 1.621 1.218 0.962 0.787 0.669 0.592 0.550 0.537 

40.0 2.390 1.662 1.259 1.003 0.828 0.709 0.633 0.590 0.577 

50.0 2.593 1.865 1.462 1.205 1.030 0.911 0.834 0.792 0.779 

60.0 2.795 2.067 1.664 1.407 1.232 1.113 1.036 0.994 0.981 

70.0 2.997 2.269 1.866 1.609 1.434 1.315 1.238 1.196 1.183 

80.0 3.199 2.471 2.068 1.811 1.636 1.517 1.440 1.398 1.385 

90.0 3.401 2.673 2.270 2.013 1.838 1.719 1.642 1.600 1.587 

100.0 3.603 2.875 2.472 2.215 2.040 1.921 1.844 1.802 1.789 

Conclusion: The analysis showed the pressure 

distribution across a bounded circular reservoir for the 

constant terminal rate case. It was shown from the “No 

Flow” boundary condition (Figs. 1 to 12) that the 

dimensionless pressure was seen to increase uniformly 

with dimensionless time. The results obtained from this 

analysis showed that there was a strong correlation with 

the results obtained from the Van Everdigen and Hurst. 

The Van Everdigen and Hurst solutions only state the 

pressure at the wellbore at a particular time but this 

work predicts the pressure variation in the entire 

reservoir from the wellbore to the external boundary at 

the same time. Therefore the Finite element method can 

be used to approximate the values of well pressures in 

the entire bounded circular reservoirs. 
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