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ABSTRACT: Markov decision processes have been applied in solving a wide range of optimization problems over 

the years. This study provides a review of Markov decision processes and investigates its suitability for solutions to 

portfolio allocation problems under vendor managed inventory in an uncertain market environment. The problem was 

formulated in the frame work of Markov decision process and a value iteration algorithm was implemented to obtain the 

expected reward and the optimal policy that maps an action to a given state. Two challenges were examined –the 

uncertainty about the value of the item which follows a stochastic model and the small state/action spaces that can be 

solved via value iteration. It was observed that the optimal policy is expected to always short the stock when in state 0 

because of its large return. However, while the return is not as large as in state 0, the probability of staying in state 2 is 

high enough that the vendor should long the stock because he expects high reward for several periods. We also obtained 

the expected reward for each state every ten iterations using a discount factor of 95.0=λ . In spite of the small 

state/action spaces, the vendor is able to optimize its reward by the use of Markov decision process. ©JASEM 

 

http://dx.doi.org/10.4314/jasem.v20i4.28 
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Decision making plays a very important role on 

individual, organizational, societal and governmental 

levels. In this study, the decision maker (vendor), 

after considering all surrounding circumstances, has 

to go through the mental process before an action is 

taken among several alternatives. The kind of 

decision taken by the vendor today affects its future 

either positively or negatively. The fundamental 

decision faced by the vendor is how to optimally 

allocate its funds at each decision epoch during a 

time horizon on an uncertain market environment in 

order to optimize its reward.  From control point of 

view, the vendor as the controller must optimize its 

reward function at each decision epoch by selecting 

appropriate action(s) from its action space. The 

optimal policy that maps action to a given state was 

also studied. The main objective of the study is to 

apply Markov decision process to portfolio allocation 

problem under vendor managed inventory 

environment in order to obtain the expected reward 

for each decision and the optimal policy that maps an 

action to a given state. 

 

Inventory management is very important in most 

companies as well as commercial sectors because it 

helps the company or the vendor to respond quickly 

to customers’ demands, which is an important 

element in competitive markets. An inventory is a 

collection of people, equipment, and procedure that 

function to keep account of the quality of items in 

inventory and determine which item to purchase or 

what quantity to produce. This study considers 

portfolio allocation problem under vendor managed 

inventory system. Vendor Managed Inventory (VMI) 

is a partnership between a supplier and a customer 

where the supplying organization makes inventory 

replenishment decisions on behalf of the 

customer,(Chukwu and Echo,2009). Traditionally, 

investment is the current commitment of resources in 

order to achieve later benefits. These benefits are 

obtained under portfolio management which is a 

decision process of dividing the total investment 

funds among some major asset classes such as 

equities, bonds, goods etc (Haley, 2009). Portfolio 

allocation is how an investor allocates his funds 

among a set of investments to maximize return while 

simultaneously minimizing risk ( David, 2008). 

Portfolio allocation is also the investment of liquid 

capital to various trading opportunities like goods, 

stocks, foreign exchange and others. A portfolio is 

constructed with the aim of achieving a maximum 

expected return for a given risk and time horizon. 

Portfolio allocation problem is a problem which has 

generated a great deal of research since it was first 

formally defined by Harry Markowitz in 1952, where 

he used mean variance(MV) optimization model as a 

breakthrough achievement in modern portfolio theory 

( David, 2008). However, there is a major drawback, 

the Markowitz model calculates the covariance 

between each pair of securities and because the 

covariance between any pair of investments must be 

calculated to run the Markowitz model, this results in 

a large number of calculations. The size of the 

covariance matrix coupled with the fact that 
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Markowitz model is formulated as a quadratic 

program (much less efficient than linear program) 

means that the model becomes infeasible very 

quickly as the number of investments increases. 

Because of covariance problem, it turns out that 

Markowitz model has not been much used in practice 

since its publication in 1952. For this reason, other 

models have been developed. 

 

 Konno and Yamazaki, (1980), developed a model 

that uses mean absolute deviation (MAD) rather than 

the mean variance as a measure of risk. This model 

does not measure how pair of securities is related. 

This enables the problem to be formulated as a linear 

program. For this reason, the MAD model is much 

easier in computational sense. After this model, 

Markov Decision Process came into place. The 

problem that is inherent in any portfolio optimization 

model is the uncertainty in the forecasted marked 

data. Invariably, any potential investor will make 

predictions about future market when deciding how 

to allocate his funds, not doing so would be foolish. 

In this study, we used the optimization technique 

under uncertainty which is Markov decision process. 

A Markov decision process is a representation of 

dynamic program. An MDP is represented by the 

state, the decision set, which is made up of a finite set 

of allowable decisions, the transition probabilities, 

and the expected reward. This technique is limited by 

the fact that there can only be a finite number of 

elements in the decision set and the state space, as 

opposed to stochastic programming in which 

uncertainty is represented by the probability 

distribution(David, 2008). 

 

Many related research works have been carried out. 

Dror and Ball (1987) considered the application of 

integrated inventory and transportation problem. 

They investigated the problem of distributing heating 

oil among customers using a fleet of vehicles. Their 

objective was to minimize the annual delivery stock-

out costs using both deterministic and stochastic 

demands. The allocation of human and physical 

resources over time as a fundamental problem that is 

central to management science was carried out by 

Warren, et al (2003). They reviewed a mathematical 

model of dynamic resource allocation that is 

motivated by problems in transportation and logistics 

using an algorithm developed by Warren. They 

showed how problems in freight transportation can be 

solved through dynamic programming to select a 

policy that maximizes the expected reward over the 

time horizon. Transaction costs and resampling are 

two important issues that need great attention in 

every portfolio investment planning, Dror and 

Trudean , 1996; Christophette et al (2004) considered 

a risky asset whose instantaneous rate of return takes 

two different values and changes from one to the 

other one at random times which are neither known 

or directly observable. They studied the optimal 

strategy of traders who, in the presence of cost 

transaction, invest on this risky asset, or on a non-

risky asset according to their belief on the current 

state of the instantaneous rate of return and finally 

applied dynamic programming. In Application of 

Markov Decision Process to a Simplified Model of 

Robot Fire Fighter studied by Kwame (2009), he 

provided a review of Markov decision process and 

investigated their suitability for the problem of 

designing autonomous intelligent agent for forest fire 

fighting. He formulated the problem in the frame 

work of Markov decision process and implemented a 

fast value iteration algorithm to obtain the optimal 

policy. Arseal (2009) studied the Graphic Processing 

Unit (GPU)-Bases Markov Decision Process. He 

used Markov decision process to provide a 

mathematical frame work for modeling decision 

making in situation where outcomes are partly 

random and partly under the control of the decision 

maker and finally applied value iteration to obtain the 

optimal policy.  Md.Noor and John (2010) studied 

stochastic investment decision with dynamic 

programming. In their research, proper investment 

decision making is key to success for every investor 

in their efforts to keep pace with the competitive 

business environment. The mitigation of exposure to 

risk plays a vital role, since investors are now directly 

exposed to the uncertain decision environment. They 

opined that the expected reward on investment of a 

decision often carries high degree of uncertainty and 

their objective was to formulate a dynamic 

programming model for the investment incorporating 

the uncertainty in a probabilistic manner in order to 

find a policy that maximizes the expected gain. 

Kobbane et al (2012) discussed the approach of using 

MDPs for dynamically optimizing the network 

operations to fit the physical conditions. They 

observed that the MDP model allows a balanced 

design of different objectives, for example, 

minimizing energy consumption and maximizing 

sensing coverage. Mohammad, et al (2015) applied 

Markov decision process in wireless sensor network. 

They opined that wireless sensor networks (WSNs) 

operate as stochastic system because of randomness 

in the monitored environments. For more service 

time and low maintenance cost, WSNs require 

adaptive and robust methods to address data 

exchange, topology formulation, resource and power 

optimization, sensing coverage and object detection, 

and security challenges, Dimitrios, (2013) studied 

portfolio selection with multiple risky assets, linear 

transaction costs, and a risk measure in a multi-period 
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setting and formulated the multi-period portfolio 

selection problem as a dynamic program. To solve 

the problem, he constructed approximate dynamic 

programming (ADP) algorithms which included 

Conditional-Value-at-Risk (CVaR) as a measure of 

risk for different separable functional approximations 

of the value functions. 

 

MATERIALS AND METHODS 
Methodology: In this section, the method applied is 

Markov Decision Process which an extension of 

Markov Chain. The Markov decision process (MDP) 

frame work developed to investigate a solution to a 

portfolio allocation problem is given by  

( ) ( )
∧

+= αωω titititititii aaer ,,,,,,
,, - ( )a ti

C
,

………… (1) 

 

The allocation has two challenges: (i) the uncertainty 

about the value of item that changes with the 

expected return and follows a stochastic model. (ii) 

The state/action space which is small and can be 

handled by value iteration method. 

 

Definition of Notations 

M =Number of states in the state space 
∧

α i
=An expected return 

S = Set of all possible combinations of economic 

states and weights 

W =Set of weights 

( )aSr t
, = Reward accrued between time t  and 

1+t  for a given state and action 

e ti,
= The economic state of each item i  at time t  

A = Set of all possible actions 

AS
= The set of actions available at each state 

S t
 = The state of the process at time t  

at
 = Action taken at time t  

p
ij

= The probability of moving from state i at time 

t  to state j  at time 1+t for a Markov process 

( )SaS ttt
p

1
,,

+
 = The probability of transitioning 

from state S t
 at time t  to another state S t 1+

 at 

time 1+t for a given action at
 for a Markov 

decision process 

( )at
C  = The transaction cost function for a given 

action. 

λ = Discount factor 

c  = The transaction cost constant 

The objective is to maximize the expected reward of 

a portfolio of items over a finite time horizon, each 

with expected return. To find a policy that optimally 

chooses an action, we assume  

We have a fixed capital and a fixed universe of items 

to deal with. 

We have an expected return for each item which 

changes each time period following a well-defined 

Markov process ie [ ] pXX ijnn
ijp ===

−1
/  

(2) 

Here, we define each item as following a Markov 

model that transitions from period to period and each 

state of the Markov model has an expected return 
∧

α i
 associated with it.  

States: The state is the economic state of each item. 

The economic state in the study is the economic 

value (price) of the item. The set of M states is 

defined as { }ME ,...,2,1= . 

Transition: Each time period, the item transits to 

either the same state or a new state. The transition 

probability matrix is given as, 

 

Table 1: The transition probability matrix for the 

Markov model 

                        1       2      .       .      ,   . . .   M 

M

p
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


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In the study, the states of the Markov model are ,1,0

and 2 . That is 3=M ,  

Where:  =0 Bear Market 

  =1 Recession 

  =2 Bull Market 

 

Markov Decision Process; This comprises of four 

major elements; states, actions, Markov transition 

probabilities and reward. In most cases, a fifth 

element, decision epoch is added to the model. At 

each time step, the process is in state st
and the 

decision maker (vendor) may choose any action at
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available in state st
. The process responds at the 

next time step by randomly moving into a new state 

st 1+
and giving the decision maker a corresponding 

reward ( )aSr t
,  . Markov Decision Process is an 

extension of Markov chain; the difference is the 

addition of action and reward. An MDP takes the 

Markov state for each item with associated expected 

return and assigns weight describing how much of 

the capital to invest in that item. Each state of the 

MDP contains the economic weight of the item and 

current weight invested.  The actions allow us to 

modify the weights of the item from period to period. 

The rewards also specify how much expected return 

the item generates in its current state. 

 

Decision Epoch: We refer as decision epoch the set 

of times at which decisions are made, ie

Tt ,...,3,2,1= . At each decision epoch, the vendor 

observes the state st
, chooses an action at

and 

receives a reward ( )aSr t
, which is a function of 

state and action of that decision epoch. 

 

State Space: The state space S of the MDP consists 

of all possible combination of economic state e ti,
, 

and weights ω ti ,
for all the items. There are W

discrete set of weights. If there are N item at time t , 

the state st
of the MDP is the economic state of each 

item i at time t , e ti,
and the proportion of money 

ω ti ,
invested in the item. That is

( ) ( ){ }ωωω tNttitNttt eees ,,2,,,2,1
,...,,,,...,,= . 

Since there are N items, each item takes M

economic states and have W weights assigned to the 

item, then the cardinality of the state space for one 

item is MW and the cardinality of the state space for 

N items is N
MW

,so U
Tt

tsS
∈

= . 

 

Action Space: The action space A consists of all 

possible actions the vendor can take. At each decision 

epoch, the vendor takes an action. Since we have N

items and W different weights, the action space at 

any given time for one item is W and N
W

for N

items. In each state Sst
∈ , the decision maker, 

based on what he observes in the state, chooses an 

action at
from the set of all allowable action in that 

state As
, then U

Ss
sAA

∈

= . The action space for this 

study is { }2,1,0,1,2 −−=A . These actions are 

based on the amount invested, Md. Noor et al (2010), 

where 

 

=− 2 Invest the capital on a risk free item 

=−1 Short the stock 

=0 Invest nothing in the stock and everything in 

cash 

=1 Long stock 

=2 Invest the capital and any excess amount above 

the working capital in the item. 

 

At each decision epoch, the MDP transits to the same 

state or a new state depending on the transitions of 

the Markov model for each item and action taken. 

Reward: When an action Aa st
∈ is taken by the 

vendor in state st
at decision epoch t , the vendor 

receives a reward ( )aSr t
, which is a function of the 

state and action taken. Transaction costs for this 

study includes fixed cost and variable costs such as 

stock out cost, holding cost and transportation cost. 

( )at
C is the transaction cost function based on the 

action at
he takes and is defined as  

( ) ∑
=

=
N

i
tit aa cC

1
,

; 10 ≤≥ c  (3) 

Therefore, the reward for item i currently in state 

( )ω titie ,,
,  when an action is taken is defined as  

( ) ( )
∧

+== αωϖ itititititit aaer ,,,,,
,,

( )a ti
C

,
− . 

 

Policy: A policy is a function that maps an action to 

every state. A policy is optimal if it generates at least 

as much as total reward as all other possible policies. 

Using MDP, the value iteration algorithm method 

suggested by Puterman (1994) was used to find a 

stationary −ε optimal policy. A policy is optimal if 

the decision rule employed is invariant over time. 

The algorithm is as follows 

1. Select ,
0

υ specify 0fε , and set 0=n  

2. For each Ss ∈ , compute ( )s
n

υ
1+

 by 
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( ) ( ) [ ] ( )








+= ∑
∈∈

+

Sj

n

a

n
jasjPaSr

A

s

s

υυ λ ,/,max
1

……… (4) 

3. If 
( )

λ

λε
υυ

2

11 −
−

+
p

nn
 

Go to step ,4 otherwise increment n by one and 

return to step 2  

4. For each ,Ss ∈ choose 

( ) ( ) [ ] ( )








+∈ ∑
+

∈ j

n

a

jasjPasr

A

s

s

d υλ
ε

1
,/,argmax

 

and then stop. 

υ
1+n

is found by iterating equation (4) until some 

convergence measure is obtained. That is until the 

difference between υ
1+n

and υ
n

becomes smaller 

than some threshold.  The fundamental idea used in 

this approach is to compute the value of each state 

and then use the value to select an optimal action in 

each state. 

 

A Case Study: Here, we apply value iteration 

algorithm on the developed MDP model to obtain the 

expected reward for each state and also find the −ε
optimal policy for the MDP. We consider one item 

and allow a few weight 

 

We consider a vendor located in Ogbete main market, 

Enugu, Enugu State of Nigeria selling foodstuff (Rice 

and Beans). He buys from the distributor in lorry 

loads every month and sells to customers in bags. At 

the end of each month, he takes decision on how to 

re-invest his funds based on the prevailing market 

price and the expectation of future market price. 

According to the vendor, there are periods the prices 

of the items rise, fall or remain stable. 

In the study, we consider one item (Rice). There are 

situations where all the actions are not considered 

because of the prevailing market. The actions; short 

the stock, invest nothing and everything in cash, long 

the stock are the actions most frequently considered 

and taken by the vendor. While actions; invest the 

capital on a risk free item, invest the whole capital 

plus any excess amount above the working capital are 

considered and taken in rare occasions.  

 

The table below shows the summary of information 

and data recorded by vendor on the movement of the 

item (Rice) from one state to another based on the 

price of rice per bag for four years ( )20152012 − . 

 
Table 1: Data – The movement of the item from one 

state to another 
  

   0     1     2   ni

 

  

















1811

6122

145

2

1

0

20

20

10

 

Where state =0 Bear market ( )500,7Np  

 =1 Recession ( )800,7500,7 −N

inclusive 

 =2 Bull market ( )800,7Nf per a bag. 

5 is the number of time the price remained in state 0
(Bear market), while 4 is the number of time the 

price moved from state 0 to state 1and so on. 

 

Table 2: The expected return for each state of the 

Markov chain 
State 

Expected return 

∧

α i
 

0 -0.01 

1 0.0001 

2 0.005 

The expected return for each state was obtained by 

taking the average of his profit on those months he 

had bear market, recession and bull market 

respectively. It is expressed as the proportion of 

money invested. The negative sign shows that on 

average he was at loss. 

 

RESULTS AND DISCUSSIONS 
Using multinomial distribution, the transition 

probabilities are estimated as

n

n
p

i

ij

ij
.

= , where nij

is the number of time the price moved from state i to 

state j and ni.
is the number of time the price is in 

state i . From table1, the transition probability matrix 

is as given in table 3 below. 
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Table 3: Transition probability matrix for the 

Markov model 

        0           1          2 

















9.005.005.0

3.06.01.0

1.04.05.0

2

1

0

 

Recall that states 2,1,0  are the states of Markov 

chain. 

Each state of MDP contains the Markov model state 

and the weight assigned to it. Now, we have three 

states, three weights and one item, the cardinality of 

the state space for one item is 933 == xMW . 

Therefore, the entire MDP state space is written as  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }1,2,1,11̀,0,0,2,0,1,0,0,1,2,1,1,1,0 −−−=S

, where the first number is the Markov state and 

second the weight of the item. We note that there is a 

limited set of actions for each state. This is because 

the vendor does not consider all the actions at the 

same time due to the prevailing market. The set of 

actions he considers depending on the prevailing 

market price at each decision are 

( ) ( ) ( )1,0,1,0,1,2,2,1.0 −−− and . If the current 

weight on the item is 1− with the signal in state i , 

the available set of actions is { }2,1,0
1,

=
−Ai

ie

( ) ( ) ( )
{ }2,1,0

1,2,1,1,1,0
=

−−−A . If the current weight is

0 , the available set of actions is { }1,0,1
0,

−=Ai
, ie

( ) ( ) ( )
{ }1,0,1

0,2,0,1,0,0
−=A and so on. Since we 

consider one item, we then build up the transition 

probability matrix for the MDP for each action taken 

which incorporates weights from the transition 

probability matrix for the markov model. We then 

place these probabilities (table 3) in the proper cells 

since the weight do not affect the transition 

probabilities. 

 

Table 4: Transition probability matrix for MDP for 

action 2−  

0,-1       1,-1   2,-1 

 

 















 −

=

9.005.005.0

3.06.01.0

1.04.050

1,2

1,1

1,0

P  

For action 2− , we observe that action 2− is 

available in { }0,1,2
0,

−−=Ai
, that is in states 

( ) ( ) ( )1,2,1,1,1,0 and states ( ) ( ) ( )1,2,1,1,1,0 −−− are 

possible future states for transition. Similarly, the 

other transition probability matrices for each action 

are obtained in the same manner. 

 

Table 5: Transition probability matrix for action 1−  

                                                0,-1    1,-1     2,-1       

0,0      1,0       2,0 



























=

9.005.005.0000

3.06.01.0000

1.04.05.0000

0009.005.005.0

0003.06.01.0

0001.04.05.0

1,2

1,1

1,0

0,2

0,1

0,0

P

 

 

Table 6: Transition probability matrix for action 0 

0,-1     1,-1     2,-1     0,0        1,0      2,0        0,1      1,1       2,1 



































−

−

−

9.005.005.0000000

3.06.01.0000000

1.04.05.0000000

0009.005.005.0000

0003.06.01.0000

0001.04.05.0000

0000009.005.005.0

0000003.06.01.0

0000001.04.05.0

1,2

1,1

1,0

0,2

0,1

0,0

1,2

1,1

1,0
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Table 7: Transition probability matrix for action 1 
0,0       1,0      2,0        0,1         1,1     2,1 



























−

−

−

9.005.005.0000

3.06.01.0000

1.04.05.0000

0009.005.005.0

0003.06.01.0

0001.04.05.0

0,2

0,1

0,0

1,2

1,1

1,0

 

   

 

Table 8: transition probability matrix for action 2  

  0, 1       1,1     2,1 

















−

−

−

9.005.005.0

3.06.01.0

1.04.05.0

1,2

1,1

1,0

 

 

We apply the value iteration algorithm on equation 

(1) using the transition probabilities for each action 

chosen and the expected return for each Markov 

state. 

Let the discount factor 95.0=λ and set .01.0=ε

the cost function is given as ( )aa tt
C 003.0= . The 

software C
++

was used to run the algorithm and the 

result of the iteration is as shown in table below. We 

obtain the convergence of expected reward for each 

state every 10  iteration 

. 

Table 9: Convergence of the expected reward for each state every 10 iterations 

N/State (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1) (2,-1) (2,0) (2,1) Epsilon  

optimal ( )ε  

0 0 0 0 0 0 0 0 0 0  

1 0.010 0.007 0.004 0 0 0 -0.001 0.002 0.005 0.010 

10 0.035 0.032 0.029 0.022 0.024 0.025 0.029 0.032 0.035 0.003 

20 0.055 0.052 0.049 0.041 0.043 0.044 0.049 0.052 0.055 0.002 

30 0.066 0.063 0.060 0.052 0.055 0.056 0.060 0.063 0.066 0.00091 

40 0.073 0.070 0.067 0.059 0.061 0.063 0.067 0.070 0.073 0.00054 

50 0.077 0.074 0.071 0.064 0.066 0.067 0.072 0.075 0.078 0.00032 

 

We also obtain the optimal policy for each state, by choosing the action that maximizes the expected reward as 

given from value iteration as in table below. That is the policy mapping an action to each state using step 4 of 

the algorithm. 

 

Table 10: Action mapped to each state using step 4 of the algorithm 
State (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1) (2,-1) (2,0) (2,1) 

Action 0 -1 -2 0 0 0 2 1 0 

 

In table 3,it is observed that the system has a very 

high probability ( )9.0 of staying in state 2 (Bull 

market) and a very low probabilities (0.05) and (0.05) 

to move from states 2 to 0 and 1 respectively. In 

table 2, the 0ptimal policy is predictable. When the 

item is in state 0 which predicts a strong negative 

return, we always perform the action that gives us a 

short position to capture the negative expected return. 

Similarly, when the item is in state 2 , we long the 

stock to capture the strong positive return. 

 

By inspecting the expected reward of every state in 

table 9 , you would expect the optimal policy to 

always short the stock when in state 0 because of its 

large return. However, while the reward is not as 

large as state 0 , the probability ( )9.0 of staying in 

state 2 is so high enough that we should long the 

stock because we expect high reward for several 

periods. The −ε optimal policy is as given in the last 

column of table 9 . Table10  shows the optimal action 
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mapped to each state using step 4 of the algorithm to 

obtain the expected reward.  

 

Conclusion: In the study, we applied Markov 

decision process to a portfolio allocation problem 

under vendor managed inventory in an uncertain 

market environment. The objective is to obtain the 

optimal policy that maps an action to a given state in 

order to maximize the expected reward. The prices of 

the items are uncertain and change at any time. The 

vendor has to choose actions based on the price ( the 

prevailing market price and the expected future price) 

to maximize its expected reward. The problem was 

formulated in the frame work of Markov decision 

process and value iteration algorithm was adopted to 

obtain the optimal policy. In the case study, the 

optimal is expected to always short the stock when in 

state 0 because of its large return. While the return is 

not as large as in state 0, the probability of staying in 

state 2 is so high enough that the vendor should long 

the stock for he expects high returns for several 

periods. We were also able to obtain the convergence 

of the expected reward for each state every 10 

iterations as shown in table 9. Table 10 shows the 

best action for each state. 

 

We conclude that Markov decision process is a good 

model for solving portfolio allocation problem under 

vendor managed inventory in an uncertain market 

environment despite the small state/action spaces. 

One could apply other optimization models to take 

care of situations where the state/action spaces are 

large or considered to be infinite. This research work 

can be extended to two item case where each item 

follows a different Markov process. With more than 

one item in the system, we must consider the 

relationship between the items, defined by 

conditional probabilities. Study should be made when 

the items are independent and when they are 

correlated. Each item has a different transition 

probability matrix, which is used to build up the 

transition probability matrix for the Markov Decision 

Process for a given action when the items are 

independent or correlated. 
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