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ABSTRACT: This work reports the synchronization of a pair of four chaotic systems via nonlinear 

control technique. This method has been found to be easy to implement and effective especially on 

two different chaotic systems. We paired four chaotic systems out of which one is new and we have 

six possible pairs. Our numerical results show how effective the nonlinear control method is to 

chaotic systems.  © JASEM 

http://dx.doi.org/10.4314/jasem.v21i1.10  
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Introduction: Nonlinear dynamical systems with high 

sensitivity to initial conditions are termed chaotic. 

The chaotic behavior of these systems can be found 

in real life situation and also in devices (Singer et al., 

1991). There are many features of chaotic systems 

which have been studied and they include chaos 

control, chaos stability, pattern formation, amplitude 

death, chaos synchronization etc. Ever since the 

introduction of the field of chaos synchronization by 

Pecora and Carroll (1990), the field has attracted the 

attention of many researchers (Ajayi et al., 2014; 

Laoye et al., 2008; Yang, 2012; Lu et al., 2013; Ho 

and Hung, 2002;  Masoller, 2001; Park, 2006; Lu and 

Lu, 2003) due to its application in electronics, secure 

communications, modeling brain and cardiac 

rhythmic activity etc. Because of the importance of 

synchronization in theory and practical applications, 

several synchronization techniques have been studied 

which include projective, complete, generalized, 

anticipated and adaptive synchronization. 

Synchronization of identical chaotic systems is 

common in theory (Idowu and Vincent, 2013; 

Olusola et al., 2011), but in practical world, most 

systems cannot be assumed to be identical especially 

in laser arrays (Park, 2006). Although the 

synchronization of two different chaotic systems 

have been reported using different methods, we have 

employed the nonlinear control method on four 

chaotic systems in order to investigate the 

effectiveness of the method on chaotic systems. 

 

System Description: In this Section, we considered 

pair of four chaotic systems in which one is taken as 

the drive system and the other one is taken as the 

response system. When two systems are paired from 

four systems then we have six possibility of pairing. 

The four chaotic systems are: 

Lu, Chen and Zhang system (Lu et al., 2002)

 

 

� �́ = ��� − �	�́ = −�
 + ��
́ = �� − 

              (1) 

System (1) has chaotic attractor when a=36, b=3, c=20 

 

Liu system (Liu et al., 2004) 

� �́ = ��� − �	�́ = 
� − ��

́ = −�
 + ℎ��           (2) 

 

 

System (2) has chaotic attractor when a=10, b=40, c=2.5, h=4, k=1 

Chen system (Chen and Ueta, 1999) 

� �́ = ��� − �	�́ = �� − �	� − �
 + ��
́ = �� − 

           (3) 

 

System (3) has chaotic attractor when a=35, b=3, c=28 
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Qi et al system (Qi et al., 2008) 

��́ = ��� − �	 + ��
�́ = �� + �� − �

́ = −

 + ��         (4) 

 

System (4) has chaotic attractor when a=14, b=43, c= -7, d=16, e=4 

 

Synchronization between different chaotic systems:For chaos synchronization between (1) and (2), (1) is taken 

as the drive system while (2) is taken as the response system having a new form (5) with control parameters u1, 

u2, u3 

 

� ��́ = ����� − ��	 + ����́ = 
��� − ����
� + ��
�́ = −��
� + ℎ���� + ��       (5) 

 

Our target is to determine the control parameter uifor the global synchronization of system (1) and (5). 

We define  

 

��� = �� − ��� = �� − ��� = 
� − 
          (6) 

 

� ��́ = ���� − ���� − �� + �� + ����́ = 
��� − ����
� + �
 − �� + ����́ = −��
� + ℎ��� − �� + 

 + ��       (7) 

 

If we choose  

� �� = ��� + �� − � − ���� + �� − ���� = −
��� − 
�� − 
��� + ����
� − �
 + ���� = ��
� − ℎ��� + �� − 

      (8) 

 

then 

���́ = −���� + ����́ = −
�����́ = −����         (9) 

 

The error dynamics of system (9) can be re-expressed in matrix form as  

� = �−�� 1 00 −
� 00 0 −���        (10) 

 

where a1=10, b1=40, c1=2.5. The eigenvales of P are -40, -2.5, -10 which satisfy the Hurwitz criterion for 

systems to be asymptotically stable i.e. all eigenvalues must have negative real part. Once this is achieved then 

it implies that system (5) synchronizes system (1). If we represent the synchronization of system (1) and system 

(2) with A1 then synchronization of system (1) and system (3) is A2, (1) and (4) is A3, (2) and (3) is A4, (2) and 

(4) is A5, and finally (3) and (4) with A6. For A1 the control parameters are given by (8) and the error dynamics 

are given by (9) 

 

The following are the list of control parameters and error dynamics for the various pair of systems A2, A3, A4, 

A5, and A6 after following the same procedure as in A1 

For A2, the control parameters are as follows: 

 

� �� = ��� − �	� + ���1 − ��	 − ��� − 1	�� = ��� − ��	�� − �
 − �
� + ��	�� − �
� + �	� + ��
��� = ���
 − 
� − ��	 + 
�
� + �� − 

     (11) 
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And the error dynamics are 

���́ = −���� + ����́ = −
�����́ = −����         (12) 

 

Where  a1=35, b1=3, c1=28, a=36, b=3, and c=20. The eigenvalues of (12) are all negative real part which satisfy 

the Hurwitz criterion for systems to be asymptotically stable. 

For A3, the control parameters are as follows: 

 

��� = ��� − �	� + ���1 − ��	 − ��� − 1	 − ����
��� = −��� − ���� + ���� − �
 + ��
��� = 
�
 − ���� + �� − 

     (13) 

 

And the error dynamics are 

���́ = −���� + ����́ = −�����́ = −
���         (14) 

 

Where  a1=14, b1=43, c1= -7, d1=16, eo=4, a=36, b=3, and c=20. The eigenvalues of (14) are all negative real 

part which satisfy the Hurwitz criterion for systems to be asymptotically stable. 

 

For A4, the control parameters are as follows: 

� �� = ��� − �	� + ���1 − ��	 − ��� − 1	�� = 
�� − �
� + ��	�� + �� − ��	� + ��
� + �
 + ��
�� = 
��
� − �	−���� + ℎ��     (15) 

And the error dynamics are 

���́ = −���� + ����́ = −
�����́ = −���         (16) 

 

Where  a1=35, b1=3, c1= 28, a=10, b=40, c=2.5, k=1 and h=4. The eigenvalues of (16) are all negative real part 

which satisfy the Hurwitz criterion for systems to be asymptotically stable. 

 

For A5, the control parameters are as follows: 

� �� = ��� + �	� + �� + ��� − 1	 − ���� − ������ = −�
� + ��	�� + 
�� − ���� + ��
� + �
 − ��
�� = 
��
� − �	−���� + ℎ��     (17) 

 

And the error dynamics are 

���́ = −���� + ����́ = −
�����́ = −���         (18) 

 

Where  a1=14, b1=43, c1= -7, d1=16, eo=4, a=10, b=40, c=2.5, k=1 and h=4. The eigenvalues of (18) are all 

negative real part which satisfy the Hurwitz criterion for systems to be asymptotically stable. 

 

For A6, the control parameters are as follows: 

� �� = ��� − �	�� + ���1 − ��	 + ��� − 1	 − ����
��� = �� − �	� − �� − ��	�� + 2�� − ���� + ��
� − �
�� = 
��
� − 
	−���� + ��     (19) 

 

And the error dynamics are 



Synchronization of two different chaotic systems via nonlinear control  97 

 

BABALOLA, MI; IYORZOR, BE 

 

���́ = −���� + ����́ = −�����́ = −
��         (20) 

Where  a1=14, b1=43, c1= -7, d1=16, eo=4, a=35, b=3, and c=28. The eigenvalues of (20) are all negative real 

part which satisfy the Hurwitz criterion for systems to be asymptotically stable. 

 

Numerical simulations: To verify the effectiveness of controllers (8), (11), (13), (15), (17) and (19), numerical 

solutions are presented. In the numerical simulation, the fourth-order Runge-Kutta method is used to solve the 

systems with time step size 0.001. Different initial  conditions are used for the various pairs of systems. 

 

 
Fig. 1: Error dynamics of a pair of system A1 

       Fig. 2: Error dynamics of a pair of system A2 

 

 
Fig. 3: Error dynamics of a pair of system A3 Fig. 4: Error dynamics of a pair of system A4 

Fig. 5: Error dynamics of a pair of system A5 Fig. 6: Error dynamics of a pair of system A6 
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Conclusion:We have been able to design control 

parameters via nonlinear control technique which is 

capable of synchronizing two different chaotic 

systems. This technique is effective and easy to 

implement as shown in our numerical results. The 

results of the six possible pair of chaotic systems are 

globally and asymptotically stable.   
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