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ABSTRACT: In this paper, we formulated a compartmental model to investigate the dynamics
of dengue fever in a population with some measure of disease control. We qualitatively and
quantitatively analyzed the model and found that the model has a disease free equilibrium
(DFE), an endemic equilibrium point and undergoes the phenomenon of backward bifurcation.
It was also discovered that Dengue can be eliminated irrespective of the initial size of the
infected population whenever the effective reproduction number is less than one. Numerical
simulations were carried out on the model and effective control measures were proposed that
will result in reducing the burden of the disease in the population. © JASEM
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Dengue, a mosquito-transmitted disease caused by
any of four closely-related virus serotypes (DEN-1-4)
of the genus Flavivirus, is endemic in at least 100
countries in Africa, the Americas, the Eastern
Mediterranean and subtropical regions of the world,
inhibited by over 2.5 billion people (Garba, et al.,
2008) . In developing countries population growth is
an important factor that contributes to the increase in
the incidence of communicable diseases which
affects mainly the urban poor, with infants and
children among the groups particularly at risk
(Nuraini et al, 2009). Urbanization and population
growth increase the demand on the basic essential
services such as housing, water supply, etc., and at
the same time induce conditions that increase the
transmission of some vector-borne diseases (Nuraini
et al., 2009). Dengue is a viral, vector borne disease,
spread by the Aedes Aegypti mosquito. It was
estimated that about 50 million infections occur
annually in over 100 countries. There is no specific
treatment for curing dengue patients (Nuraini et al.,
2009). Hospital treatment, in general, is given as
supportive care which includes bed rest and
analgesics (Nuraini et al., 2009).

Dengue virus is one of the most difficult arboviruses
to isolate (Nuraini et al., 2009). There are four
serotypes of the dengue virus; Den-1, Den-2, Den-3,
Den-4, and each of the serotypes has numerous virus
strains (Nuraini et al., 2009). Infection with one
dengue serotypes may provide long life immunity to
that serotype, but there is no complete cross-
protective immunity to other serotype (Gubler, 1998).
Identification of the primary target cells of dengue
viruses’ replication in the infected human body has

proven to be extremely difficult (Nuraini et al.,
2009).

The incubation period of the disease in an infected
host is 3-14 days (average 4-7 days) (Nuraini et al.,
2009). At the end of the incubation period, the patient
may experience a sudden onset of fever (Nuraini et
al, 2009). Viraemia is the presence of the virus in the
blood stream (Nuraini et al., 2009). It is detected
using the mosquito inoculation technique. Viraemia
is assumed to become detectable on the second or the
third day before the onset of symptoms and ends on
the last days of illness (Nuraini et al., 2009). It
usually peaks at the time of or shortly after the onset
of illness (Gubler er al, 1981). Susceptible
mosquitoes can be infected when they bite dengue
infected hosts during the febrile viremic stage
(Nuraini et al., 2009). It is usually believed that
dengue viruses quickly clear in human body within
approximately 7 days after the day of sudden onset of
fever (Vaughn et al., 1994). Naturally this clearing
process is done by the immune system which is as a
result of complex dynamics reactions (Nuraini et al.,
2009). Over the last decade mathematical models
have been formulated to evaluate the dynamics of
Dengue Fever. In this paper, a mathematical model is
formulated and analysed to investigate the dynamics
of Dengue Fever in a population in order to reduce
the public health burden of the disease.

MATERIALS AND METHODS

Let Ny (t) and Ny (t) denote the total number of
humans and vectors at time t, respectively. The
model sub-divides these populations into a number of
mutually-exclusive compartments, as given below.
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The total population of human and vectors is divided humans with dengue (I;(t)), humans treated of dengue
into the following mutually exclusive (Ry(1)), susceptible vectors (Sy(t)), vectors with latent
epidemiological classes, namely, susceptible humans dengue (Ey(t)), vectors with dengue (Iy(t)), Hence,
(Su(t)), humans with dengue in latent stage (E(t)), we have that,

Ny (t):SH (t)+E1(t)+Il(t)+Rl(t)
and

NV(t)ZSV(t)+EV(t)+IV(t)

Susceptible humans are recruited at a rate Ay, while the susceptible vectors are recruited at a rate Ay,
Susceptible humans contract dengue at a rate

ﬂD — IBVH (77va +Iv)
|4 NH

where 7, < 1, this accounts for the relative infectiousness of vectors with latent dengue Ey compared to vectors
in the Iy class.
Susceptible vectors acquire dengue infection from infected humans at a rate
Ao = Buv(MaE1+nBl1)

DH — N

H

Where 1, < np, this accounts for the relative infectiousness of humans with latent dengue E; compared to
humans in the I, class.

i

Derivation of Model Equations: Singly infected individuals with latent dengue progress to active dengue at a rate
7; - Natural human death occurs at a rate f{,; in the classes Sy,, , E1, I;, R,, respectively and those in I; class

undergo an additional dengue induced death, at rate §,;. Natural vector death occurs, at a rate y,, in the classes
Sy, Ey and I, while the vectors in the [, class undergoes additional dengue induced death, at a rate &py,
although this is negligible as infected vectors are not deemed to be suffering dengue. Exposed vectors progress to
the infectious stage at the rate yy,.

The above assumptions result in the following system of nonlinear ordinary differential equations:

‘S:H = Ay — tuSuy — ApvSu,

El = ApySy — (y1 + 1)k,

Ly =y1E - (ty + uy + 0p) 1y,

Rl =170y —uyRy,

5:1/ = Ay — ApuSv — WSy, (D
Ey = ApuSy — (yv + w)Ey,

Iy = ywEy — (uy + dyy)ly,

Table 1: Description of the state variables of the model 1

Variable Description
Su Susceptible human population
E,; Human population with dengue in latent stage
I, Human population with dengue (Dengue only)
R; Human population treated of dengue (Dengue only)
Sy Susceptible vectors population
Ey Exposed vectors
Iy Infectious vectors
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Table 2: Description of Parameters of the Model (1)
Parameter Description Values Unit Reference
Recruitment rate into the population of ~ 500,10000000 Year! Garba et al, 2008.
Ay,Ay susceptible humans,vectors
respectively.
e Natural death for humans, vectors 0.02041,36.5 Year Okuonghae and Omosigho (2011).
respectively.
Year™
Bvu Effective contact rate for dengue from 5 Year Garba et al, 2008.
vectors to humans
Bav Effective contact rate for dengue from 4 Year Garba et al, 2008.
humans to vectors
) Dengue treatment rate for /,,E;. 25,15 Ind! Year Garba et al, 2008.
Y1 Progression rate to active dengue 0.3254 Year”! Garba et al, 2008.
Yv Progression rate to active dengue 0.03 Year” Garba et al, 2008.
(vectors)
Disease induced death Dengue 0.365 Year Okuonghae and Omosigho, (2011).
Op1
Sy Disease induced death dengue (vectors) 0 Year”! Garba et al, 2008.
ky Progression rate to active dengue 0.05 Year Garba et al, 2008.
(vectors)
My, Modification parameters for E,, E}, I; 0.4,1.2,0.5,0.6,1,0.6,1 Year' Okuonghae and Omosigho, (2011)
NaMB L1
Pp: Fraction of newly infected humans with 0.6 Year Garba et al, 2008.
latent dengue
Analysis of the Model

Boundedness and Positivity of Solutions

A

Consider the region D, = {(SH,EI,Il, R, Sy, EV,IV)EIRZ: Ny < —:, Ny, < 2—:} It can be shown that the set D, is

u

positively invariant and an attractor of all positive solution of the system (1).

Lemma 1 The region D, is positively invariant for the system (1)
Proof: The rate of change of the total human population is given as

NH =$H+E1+11+R1 =AH_#HNH _5Dlll

By standard comparison theorem, N u SNy~ N,

So we have NH +Uy N, <A,

Using the integrating factor method
Ny e + u, N, " < A, e

af» Myt Myt
- <
dat (NHe ) = A” e

Jd(Ny ey

t A
Nye'' < 22
HH

A, e at

et + D

A

att=0,D = N, (0) — 24

t A
Nye'' < 22
HUH

H
HH

elHt + N, (0) — 28
UH
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Ny = Ny (0)e HHt + ‘;—” [1— e rat]
H

Y

and the rate of change of the total vector population
Ny = Ay — pyNy — 04 1, (12)
By standard comparison theorem,
Ny <Ay =Ny (13)
Similarly, using the integrating factor method, we have
N, = Ny (0)e~Hvt + 2L [1 — g=hvt]

v v (14)

In particular Ny (t) < A g Ny (0) < 2 and Ny (t) < TS N, (0) < A—V, respectively.
UH HH Ky Hv

629

So, D, is a positively invariant set under the flow described in (1). Hence, no solution path leaves through the
boundary of D,. Also, since solution paths cannot leave D,, solutions remain non-negative for non-negative
initial conditions. Solutions exist for all time t. In this region, the model (1) is said to be well posed

mathematically and epidemiologically.

Positivity of Solutions

Lemma 2.Let the initial data for the model (1) be Sy(t) >0, E;(t) > 0,1,(t) > 0,R,(t) >0,5,(t) >
0, Ey (t) and I,(t) > 0 then the solution Sy (t), E,(t), I, (t), R, (t), Sy (t), Ey(t), and I,(t) with positive initial

data will remain positive for all time t > 0.

Proof: Let t; = sup{t > 0:S,(t) > 0,E,(t) > 0,1,(t) > 0,R.(t) > 0,S,(t) > 0,E,(t) >0, I,(t) >0}>0

St = Ay — ApySy — 1Sy = Ay — (py + ue)Sy (15)

To solve the ODE using the integrating factor method
t
I.F = exp [th + {fo ADV(T)d(T)}] (16)

% [SH (exp {:th + fot Apy (T)d(f)}] = Ay [exp {ﬂHt + fot ADV(T)d(T)}] A7)
Su(texp {wty + [ Aoy @@} = $4(0) + [ Aulexpluny + [} Aoy Dd@}]dy 1,

Su(ty) = Sy(0)exp {—thl - f tlzw(ﬂd(r)}

dy >0

v [exp {—thl - Otlaw(ﬂd(r)}] | " [exp {tu +f yADV(r)d(ﬂ}
for Ey = Ay, S, — (¥ + 1y, )E, we have that £ > — (}/1 + Uy )El,
for Iy = B, — (2, + ft; + S, ), wehave that Iy > — (7, + 1, + 6, )11,
for Ry = 7,1, — f;; R, we have that Ry = — U, Ry,

for Sy = A, — A Sy — 4,S, we have that S, = —(Apy +14,) Sy,
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for By = Ay Sy — (}/V + 4, )Ev we have that £, > — (}/V + 4, )EV ,

for iV = }/VEV —(,UV +5Hv )Iv we have that iV > —(,UV +5Hv )Iv-

Similarly, we can show that S (t) > 0, E;(t) > 0,1,(t) > 0,R,(t) > 0,S,(t) > 0,E,(t) > 0, and I, (t) > 0.

Local Stability of Disease-Free Equilibrium (DFE) of the Model: The model (1) has a disease-free equilibrium,
obtained by setting the right hand side of the model to zero and also setting the disease classes to zero we obtain

é:Z = (SH’EI 711 7R1 7Sv 7Ev 71\/ ) = [_H,O,O’O,ﬂ_’o,oj (20)

H v

The stability of &, is established using the next generation operator method on the system (1). Using the notation
in van den Driessche and Watmough (2002) the matrices F; and V; for the new infection terms and the remaining
transfer terms, are respectively given as

/ 0 0 Bvuny BVH\
0 0 0 0
F = | BHvNASVY  BHvnBSV 0 0 | QD
Ny Ny
And,
93 0 0 0
v, = ~¥1 94+ O 0

0 0 gs O (22)
0 0 —Y U
Where, g, =, + 1,8, =7+ My +0p, 85 =¥ + Ly, 8 =My + Oy

. . - A + +
The spectral radius given by p(F, V1) = J VBHVBVHi: ;g;j; SZZZ) (rvtgenv) _ Rp 23)

The value Rp is the effective reproduction number.
Lemma 3 The DFE of the system (1) is locally asymptotically stable if Rp< 1 and unstable if Rp> 1.

The threshold quantity Rp is the effective or control reproduction number for the Dengue model. By Lemma 3,
biologically speaking, Dengue is eliminated from the population when Rp< 1 if the initial sizes of the
subpopulations of the model are in the region of attraction of ¢,.

However, the disease free equilibrium may not be globally asymptotically stable even if Rp< 1 in the case when
a backward bifurcation occurs. That is, there is the presence of a stable EEP co-existing with the DFE.

Existence of Endemic Equilibrium Point (EEP) of the model
Let the EEP of model (1) be denoted by &1 py = (S5, E1", I1", R{", Sy", Ey", Iy"). The equations in (1) are
solved in terms of the force of infection at steady state and they are given as

Sy =—",
" ll'lH + /IDV (24)
e AHﬂj;kV
1 ok )
(/LlH + /?“DV X}/l +ﬂH ) (25)
I** — 71/TD*VAH
1 o D
(lllH +2’DV Xyl +ll'lH )(Tl +ll'lH +§D1) (26)
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R™ = lel/lszAH
1 ok ’
(/uH + /1Dv )(71 + Uy )(T1 +4, + 5D1 )/JH @7
S>r>r _ AV
. (/_lv +2:;H )’ (28)
E** — Z*D*HAV
' (,UV +ﬂ::;H )(7V +:uv)’ (29)
Ja 7V/T;HAV
\4 ok )
(/uv + Ao )(7\/ + U, )(;uv + 5HV) (30)
Aty (1 + iy oy + g + 850+ Ay Ay (T + 2y + 8, )1,y +
N o ViAo A by + T 7 A Ay .
H 5k )
ﬂH(/lH+2“DV)(71+ﬂH)(71+ﬂH+7+5D1) (3D
now,

v Bl e t) e Bl )

Ny Ny

ks ek sk ek
Substituting the values of E, , I, , Ny to /101-1 and E;*, I;* , Ny to /TZV we have

oo Bty (g IRV )ﬂ:gv
/’LDH - had (32)
Hy 8384 +(/qu4 +Vily +7'-171)le
and
o= ,BVHAV/‘H (ﬂvg6 +7 )g3g4(/uH +I;v )IZH
DV

Ayl 8384858 6kly +(AH:qu4gsgsluH +(AH Vildy + T Ay )gsgsluv )/ﬁ;v (33)
+(AH/quag4gsgs +(AH:qu4g5g6 +(AH71/UH +O Ay )gsgs)/ﬁ{;ﬁv )/Tg

. . ek ek
substituting /101-1 to ﬂDV we have

A+ AR, +A, =0

where

A= (:qu4 VMg T )AHlulzig4g5g6 + gsgsluv(:qu4 TVMy T )(AH Vily +7171AH)
By, iy (804 + V15 )A 1 848586+ Bt (8704 + ¥1715)8586 (AN Vit +T 1A )

A, = (:qu4 TV My +le1)AHg3g4g5g6 H,+ AH/uHSg3ng5g6 +

Hy 83848586, (AH Vily + T Ay )+18kuz (g477A + 775 )AH (36)

83848586 _ﬁHVﬁvHAHﬂ;g3g4(77vg6 +7, )(8477A + Vs )’

(34)
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A, = AHﬂHgiizgngg&tlv _ﬂHlevHAvﬂHzg3g4(nvg6 +7, )(3477A + 71773)

A BBkt 1,86 +7, N8, + 1i71,)
N, 8,8,8586M,

=AMy 838i8586H,| 1~ (37)

Ay = AHﬂHgggnggéﬂv [1_(RD )2]

where g, = fy + 7,8, =T+ fly + 05,85 =V T 1,86 =M, + 5y, (38)

Hence, we now claim the following

Theorem 1: The Dengue model (1) has a unique positive equilibrium if Rp>1.

Bifurcation Analysis of the model: Theorem 2: The model (1) undergoes backward bifurcation phenomenon at

Rp = 1 under certain condition.
Proof: The proof is based on the Centre manifold Theorem.

Let x, =S, %, =E,,x; =1,,x, =R,,x; =S,,x, =E,,x, = I, .Further, let f =[f,,---, f,] denote
the vector field of the model (1). Thus, the model (1) can be written as:
dx; =A, — i x _:BVH(ﬂvxﬁ +x )xl
;| H™ 5
dt X +x, +x;+x,

dx, _ By (ﬂV'xé +Xx; )xl
- _(7/1 +:uH )xz’
dt x +x,+x,+x,

dx
_3:7/1x2_(7"1+ﬂﬁ+501)x3’
dt
[
i 1% —H Xy (39)
%:A _IBHV(ﬂAx2+773x3)x5 — X
dt XX X, >
dx X, +1] X5 )x

6 zﬂHV(nA 2 H 1755 )%s ~(, + 1, )x,.,
dt X +x,+x;+x,
dx,

?z Vv Xe _cuv +0,y )x7v

The Jacobian of the transformed system (39), evaluated at the DFE, is given by:
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a0 000 =g -A,]
0 —& 0 0 0 Bum By
0 v  -g 0 0 0 0 (
J(éz ) =10 0 T —uy O 0 0 >
0 0 0 0 -4, O 0
0 ﬂ:H”Ax; ﬂ:ﬁﬂﬁx; 0 0 —8s 0
0 0 0 0 0 7, —8s
40)
Suppose ﬁVH = ﬁV*H is chosen as the bifurcation parameter at R, = 1, we have that
B Ap8:84858Hy
VH

Ay By ty (g477A + Vs )(7v + 86lv )
The right eigenvector of J($3) p,,=p;,, 1S given by

w=(w1,w2,w3,w4,w5,w6,w7) where,

W =— IBHVIB:HX;W3(77A + 71773) <0,w, = &’
Vi8sHy i 41)
w, =w;, >0
W, = LW o, =0,w, = ﬂHszws (77A + 71773)
Hy %8s

o Baxsyw, + v
' 718586

The above right eigenvector were obtained by solving (42) below.
—HgW _,BVH77VW5 _IBVH we =0,
- g3w2 + ﬁv}ianS + ﬁanvW6 = 0’

Y, —g4w; =0,

Tw; =ty w, =0,

(42)

_ﬂVWS = 0’

* *
Bl XsWy + By 15 Xs w3 — 85w, =0,
Y Ws —8eW; =0,

Similarly, /($2) g, ,=p;,, has a left eigenvector,

V= (VI,VZ,V3,V4,V5,V6,V7) where,
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v
v =0,v, = (75 +77,8.)——,
883
v;=v,>0,v, =0,v,=0 (43)
v = 83V3 V= IB:H (7/1773 +77Ag4)v3
6 CRAd/A
D155 1758586

The above eigenvectors were obtained by solving (44) below.
— My, =0,
~ 83V, + 13 + By, xsve =0,
— gV + TV, + By x5y =0,
—Hyvy =0,
—Hyvs =0,
= Bl vy + BT,y — 83V + 7,305 =0,

" =0
=BV + By, — &6v; =0.

634

Computation of the bifurcation coefficient a and b for the Model: For the system (39), the associated non-zero

partial derivatives required for the calculation of the backward bifurcation coefficients are given by

azf2 — asz — ﬁ‘jHﬂVﬂH
ox,0x, dx,0x, A,
azfz — azfz :_IB;HIUH
0x,0x, 0x,0x, A,

azfz — azfz — ﬁ;HﬂVﬂH
ox,0x,  Ox,0x, A,
azfz — azfz — _ﬂ\tH:uH
0x,0x, 0x,0x, A, 43)
asz — asz :_ﬁ;HUVﬂH
ox,0x, 0Ox/0x, A,
azfz — azfz — _ﬂ\jHluH
ox,0x, 0x,0x, A,

azf6 — asz — ﬁVHUAﬂI%IAV
ox,0x, 0x,0x, Ao,
azfs _ azfs _ _IBVHUBIUFZIAV
ox,0x,  dx;0x, A,
azfs —__ 2IBHV77A:uf21AV

ox; Ny ty ’
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azfe — azfe :_ﬁVHIuIZJ (77A+773)
ox,0x;,  0x,0x, N, u,
azfe — azfs — _ﬁVHnB/uH v
ox,0x, dx,0x, N, i,
azfs —__ 2IBHV773:uf21AV

ox; Nty

azfe _ azf6 _ _ﬁHVﬂBﬂIZJAV

ox,0x, Ox,0x, N, i,
2°f
x93,
2
9x,003,,, .

Since we know that,

0 f
a= ka W, ’8 8; (0,0), 46)

=Ty,

k,i=1 ax aﬂ @7

we now have that,

2 2
a=2v,w,w, A (0,0),42v,w,w, Iy (0,0)+2v, w,w, aa Ik (0,0)

X, 0x, X, 0x, x,0,

2 2 2
+2v2w2w7ai(0,0)+ 20, W, W, L (0,0)+2v,w,w, L (0,0)

ox,0x, 0x,0x, ox,0x,
d°f, 9’ f, , 02 F,
+2v . wow, —=—-(0,0)+ 2v, w, w, —=-(0,0)+ v, w 6(0,0
671772 x]axz ( ) 6""17"2 ax18x3 ( ) 2772 x22 ( ) (48)

2 2 2 2
+2vw,w, a% (0,0)+ 2vew,w, a% (0,0)+ \16w32 3—f26 (0,0) +2v,w,w, M(0,0),

20X3 X, 0Xy X X30X,
which leads to

a=K,—(K, +K,),where 49)

K, =

28,8586vsW; (1, + 1715 {U_AJFW }
AH 14 (g477A + Y1 )(7\/ + 8¢y ) ’

7
2g486V3W32(77A +71773){ [ 1 )% 7
K, = : | =@, + )41, + 25 |+ 7, + 2 ||,
Lot (o ean) | T g " oge )| OD

(50)

ANDRAWUS JAMES; EGUDA, FELIX YAKUBU

635



Analysis of a Mathematical Model to Investigate the Dynamics

K. = 234V3W32:UH 1 (ﬂA:uH
3
A2H s\ M

And

7 aZf
b: VW-—k* Oa()a
kz=1 ' laxiaﬁm( )

Also we have that,
o’ f,
a'x6 alB vH

2’ f,
b = V2W6 (0,0) + V2 W7 W (0,0)
7 vH

n+—
N58:85N

86

b= (71773 77,84 )(”A + 71 )IBHV'X;W3 [ 7, }

It follows from (49) that the bifurcation coefficient, a, is positive whenever,

K >K>+K;

+1, +1, +z'177AJ+1+z'1 .

636

(52)

(33)

(54)

(55)

Thus, the model (1) undergoes a backward bifurcation at Rp=1 whenever the inequality (55) holds.

25 Stable EEP

Stabfe™

i S . Ul EEP

L
065 07 075 08 085 [

Fig. 3: Backward bifurcation diagram for the model (1) showing the force of infection

L
095

Apy as a function of the control reproduction number R;, with all the parameters used as stated in Table (2)

except fyy = 2 and Byy = 1 so thatR, < 1.

10}
Stable El

20F

Stable DFE \ L ) | D

___________

ANDRAWUS JAMES; EGUDA, FELIX YAKUBU



Analysis of a Mathematical Model to Investigate the Dynamics

637

Fig. 4: Backward bifurcation diagram for the model (1) showing the force of infection A,y as a function of the
control reproduction number R, with all the parameters used as stated in Table (2) except Byy = 2 and Sy = 1

so thatR, < 1.

Simulations
Table 3: Parameter Information Using the parameter values in Table 3, we carried out some simulations of
model (1).
Parameter Values Unit References
Ay 500 Year' Garba et al, 2008.
Ay 10’ Year' Garba et al, 2008.
By 0.02041 Year Okuonghae and Omosigho (2011)
Uy 36.5 Year Okuonghae and Omosigho (2011)
Bvu 5 Year” Garba et al, 2008.
Buv 4 Year” Gubler, 1998
T, 25 Ind”' Year'  Garba et al, 2008.
Y1 0.3254 Year” Gubler,1998
v 0.03 Year” Garba et al, 2008.
Op1 0.365 Year Gubler,1998
Syy 0 Year' Gubler,1998
Ky 0.02 Year' Garba et al, 2008.
n;(i=A,B) 0.6,1 Year' Garba et al, 2008.
1y 0.5 Year” Garba et al, 2008.
RESULTS AND DISCUSSION Garba, SM; Gumel, AB; Abubakar; MR (2008).

Biologically speaking, Dengue is eliminated from the
population when Rp< 1 if the initial sizes of the
populations of the model are in the region of
attraction of&,. However, the disease free
equilibrium may not be globally asymptotically
stable even if Rp< 1 in the case when a backward
bifurcation occurs. That is, there is the presence of a
stable EEP co-existing with the DFE. The model
undergoes the phenomenon of backward bifurcation
at Rp=1 whenever the inequality (55) holds.

Conclusion: In this paper, a mathematical model is
proposed and analyzed to study the transmission
dynamics of Dengue fever in a human population
with treatment. Analyzing the models revealed that:
The model undergoes a phenomenon of backward
bifurcation if a certain condition shown in inequality
(55) holds. The model possesses the disease free
equilibrium and it also has an endemic equilibrium.
Finally, the results from the numerical simulations
show that treatment is crucial for an effective public
health control of dengue fever.
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