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ABSTRACT 

 

Aflatoxins are highly carcinogenic secondary metabolites produced by Aspergillus 

flavus, A. parasiticus and A. nomius. Aflatoxin contamination of food and animal feeds 

is, therefore, a major food security, food safety, trade, human and domestic animal health 

concern. Researchers worldwide have suggested various agriculture-based strategies to 

manage aflatoxigenic Aspergillus species and reduce contamination to safe levels. This 

paper reviews various agricultural strategies that could be employed to reduce 

contamination of aflatoxins in food crops and animal feeds, as well as the challenges 

faced by these reduction strategies. Among these strategies are innovations like 

AflasafeTM and solar grain driers. It is hoped that this critique will stimulate refinement 

of the existing aflatoxin control approaches and innovations to maximize their efficacy.  

 

Key words: aflatoxins, plant resistance, atoxigenic strains, drying instruments, aflatoxin 
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INTRODUCTION  

 

Aflatoxins are secondary metabolites produced by the fungi Aspergillus flavus, A. 

parasiticus and A.nomius. The first two species contaminate a variety of staple foods 

including maize, groundnuts and tree nuts with aflatoxins. Contamination of food crops 

with aflatoxins results in negative health impacts to both humans and animals. Further, 

such food is prevented from accessing certain markets, resulting in economic losses [1]. 

Aflatoxins may occur in crops in the field during growth or drying and also in storage if 

kept in sub-optimal conditions. Aspergillus parasiticus is mostly associated with 

contamination of groundnuts while A. flavus is the common contaminant of maize [2, 3]. 

Aspergillus flavus produces aflatoxin B1 and B2 while A. parasiticus produces aflatoxin 

B1, B2, G1 and G2. Aspergillus nomius is rarely associated with agricultural contamination 

[4]. Aspergillus flavus and A. parasiticus infect their hosts while in the field while either 

growing or drying and continue to proliferate in the harvested grains if stored with above 

13% moisture content. According to the Food and Agriculture Organization of the United 

Nations (FAO), 25% of world’s food crops are contaminated with mycotoxins [5]. In 

sub-Saharan Africa, where most people are resource-poor, there is high exposure to 

aflatoxins through dietary staples like maize and groundnuts. Given the economic and 

health impacts associated with aflatoxin exposure in sub-Saharan Africa, it is imperative 

that the toxin is more effectively managed, especially in staple food crops.  

 

Impact of aflatoxins on human and animal health 

According to the International Agency for Research on Cancer (IARC), aflatoxins are 

classified as Group I carcinogens, causing liver cancer (hepatocellular carcinoma) in 

humans [6]. Global risk assessment studies associate between 25,200 and 155,000 human 

liver cancer cases per year with aflatoxin exposure[7]. Aflatoxins have also been reported 

to cause immune suppression in children and there is an association between aflatoxins 

and stunting in children [8–10] as well as lower weight babies at birth [11, 12], but this 

has not been proven to be a causal relation. In Kenya, consumption of aflatoxin-

contaminated maize affected 317 people with 125 deaths in 2004 [13]. This is thought to 

be the worst case of aflatoxicosis reported. Analysis of the maize samples revealed that 

the aflatoxicosis was caused by the S-strain of A. flavus [13, 14]. A summary of other 

adverse effects of aflatoxin exposure to human health is given in Wu et al.[15]. Two 

other aflatoxin producing species have been reviewed by Varga et al.[16]. Apart from 

aflatoxins, A. flavus produces cyclopiazonic acid, a toxin with the ability to induce 

various pathological lesions in test animals [17]. 

 

1. Pre-harvest agricultural management of aflatoxins 

 

a. Biological control, its mechanism and challenges 

Aspergillus flavus is predominantly a saprophytic fungus in soil but is also 

opportunistic and colonizes in environments rich in carbon and nitrogen. Two strains 

of A. flavus, S and L, have been reported [2]. Both S and L strains have globally been 

reported in maize fields. The S strain produces more aflatoxins and sclerotia (dormant 

body of fungus) but fewer conidia (asexual spores).The S and L strains also differ in 

the size of a deletion in the norB-cypA region of aflatoxin gene cluster [18]. A high 

concentration of S strain is correlated with outbreaks of aflatoxin contamination. An 
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important biocontrol strategy is to introduce an atoxigenic strain to the crop 

environment to compete with toxigenic strain [19, 20]. Atoxigenic strains are non-

aflatoxin producing strains of A. flavus that out-compete the toxigenic strain(s) in the 

soil. Atoxigenic strains that have been applied in fields include NRRL 21882, which 

is an active ingredient in Afla-Guard [21] and AflasafeTM that is being tested in fields 

in a number of African countries including Nigeria, Kenya, Zambia and Senegal. In 

each country, AflasafeTM consists of a combination of local atoxigenic strains. 

 

Co-inoculation of maize with toxigenic and atoxigenic strain (AF13) results in 

reduced aflatoxin contamination by 80-95% due to competitive 

exclusion/displacement of toxigenic strain by atoxigenic strain [22]. Others report 

aflatoxin reduction by up to 66% when atoxigenic strain NRRL 21882 (Afla-Guard) 

– Syngenta was applied to the soil [23]. It appears that touching or close physical 

interaction is necessary for atoxigenic strains to outcompete toxigenic strains [24, 

25]. It could be appropriate to apply multiple control strains with different spectra of 

touch inhibition ability in order to increase the effectiveness of biocontrol [25]. It has 

also been hypothesized that competitive exclusion due to competition for nutrients is 

involved in out-competition.  

 

A potential drawback of biocontrol is the possibility of cytoplasm fusion and nuclear 

fusion between toxigenic and atoxigenic A. flavus strains leading to production of 

ascospores (sexually-produced spores). The atoxigenic biocontrol strain could 

acquire aflatoxin pathway genes through vegetative fusion (parasexual or sexual 

reproduction) and this could exacerbate the aflatoxin contamination problem. There 

has been demonstration in vivo of sexual reproduction in A. flavus where undeveloped 

stromata (sexual structure) were found in naturally infected maize ears and developed 

to ascocarps with viable ascospores [26]. It has also been reported that A. flavus can 

undergo sexual reproduction with A.minisclerotigenes [27]. Stress to the fungi could 

lead to increased level of sexual reproduction [28]-especially when A. flavus 

experiences high temperatures and drought [29]. Recombination has also been 

detected between aflatoxigenic and non-aflatoxigenic A. flavus with some offspring 

regaining the ability to produce aflatoxins [29]. Another challenge is that farmers 

need to apply the biocontrol strain annually, which can be expensive for resource-

poor farmers. Also, plant stress due to climate change or other factors may weaken 

the defense mechanism, thereby facilitating A. flavus infection even in the presence 

of biological control (increased water stress is correlated with increased aflatoxin 

production) [30, 31]. Challenges to the biocontrol strategy for prevention of aflatoxin 

contamination can therefore be summarized as:(a) diversity of A. flavus populations, 

(b) ability of sexual reproduction, (c) plant stress overcoming biological control, (d) 

lack of consistent aflatoxin reduction by biocontrol and(e) the cost of biocontrol [32, 

33]. 

 

b.  Enhanced plant resistance against aflatoxins 

Efforts to enhance plant resistance to aflatoxin contamination in maize have mainly 

focused on resistance to the fungus, inhibition of aflatoxin production and resistance 

to insects [34]. 
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i.  Resistance breeding against Aspergillus flavus and aflatoxin 

Genetic variation for resistance to aflatoxin contamination is possibly available 

in maize and, therefore, identification and development of plant resistance to 

aflatoxins could be a durable, desirable and feasible control option [35]. 

Screening for plant resistance to aflatoxins is mainly done in the field; hence it is 

influenced by host-induced environmental reactions. It has been noted that 

aflatoxin resistance genes are polygenic, hence the need for gene pyramiding 

(method aimed at assembling multiple desirable genes from multiple parents into 

a single genotype for specific trait) using numerous genotypes with novel genes 

[35]. The need for effective, reliable and rapid screening techniques for breeding 

for resistance to aflatoxins accumulation in maize has led to development of 

improved inoculation methods as well as in vitro screening protocols such as the 

Kennel Screening Assay, which have resulted in identification of more promising 

sources of resistance to aflatoxins [36–38]. 

 

The genetics behind aflatoxin resistance are quantitatively inherited and complex 

with additive gene effects playing a major role in conditioning the inheritance of 

resistance [39, 40]. While germplasm exhibiting aflatoxin resistance has been 

identified, other approaches like gene pyramiding could be applied for further 

breeding to increase long-term aflatoxin resistance. Finally, efforts to reduce 

aflatoxin contamination through breeding should be enhanced by greater 

knowledge of gene function and expression under a range of environmental 

conditions in preparation to face increased aflatoxin levels predicted in the future 

owing to climate change and global warming [41]. The use of gene expression 

assays like microarray analysis has led to the identification of several maize genes 

that are induced during infection with A. flavus in susceptible and resistant maize 

lines [42].Proteomic studies have shown higher protein activity in resistant than 

in susceptible germplasm especially the antifungal proteins β-1,3- glucanase, 

constitutive kernel proteins and catalase proteins [43–46]. The major challenge 

with breeding for resistance is that the traits associated with aflatoxin resistance 

are polygenic and, therefore, could take many breeding seasons to come up with 

a resistant variety. Further, some of the resistant varieties are not adapted or do 

not yield well in the agro-ecologies endemic to aflatoxin contamination. There 

are additional challenges in delivery of improved genotypes to poor farmers. 

 

ii. Transgenic approaches towards Aspergillus flavus and aflatoxin-resistant 

maize 

A transgenic approach has several advantages over other potential aflatoxin 

control methods such as conventional breeding and biological control. For 

instance, such approaches shorten the time taken to come up with a product and 

are easily adaptable to the smallholder setting since all farmers need to do is to 

acquire transgenic seeds. Additional costs are, therefore, not levied to the farmer 

other than the purchase of seed if a transgenic approach is adopted. These 

approaches in management of aflatoxins have mainly focused on expression of 

recombinant insecticidal proteins from Bacillus thuringiensis (Bt), expression of 

antifungal peptides and proteins and the use of Host Induced Gene Silencing 

technology. The focus on resistance to insects is because of a correlation between 
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insect damage and aflatoxin contamination. The use of Bt toxin technology 

against the European corn borer has enabled a reduction of aflatoxin levels in 

maize [47]. 

 

Some proteins are also known to inhibit fungal growth or aflatoxin production. 

Expressing these proteins that can reduce fungal infection as well as enzymes that 

can degrade toxins (detoxifying enzymes) or proteins that block the toxin 

biosynthetic pathway could lead to low A. flavus colonization as well as aflatoxin 

accumulation in maize [48].Many antifungal genes have been identified through 

comparative proteomics between aflatoxin resistant and susceptible maize lines. 

Furthermore, the process that A. flavus uses to convert kernel starch into simple 

sugars has been key to both the infection of maize host tissue and the production 

of aflatoxin. For instance, an amy-1 α-amylase gene in A. flavus has been 

identified as a key enzyme in the synthesis of aflatoxins [49]. Currently, two 

maize inhibitors of A. flavus α-amylase have been identified and their expression 

in transgenic maize resulted in reduced colonization and aflatoxin levels. This 

suggests that expression of α-amylase in transgenic maize might reduce both 

fungal growth and aflatoxin accumulation. The efficacy of antifungal peptides 

has effectively been demonstrated by several studies and could be a promising 

management strategy against A. flavus [50].  

 

Currently, it is possible to control phytopathogenic fungi through Ribonucleic 

Acid interference (RNAi) of essential fungal gene(s) expression through the host. 

This phenomenon is also called ‘trans-gene silencing’ or ‘host induced gene 

silencing’ (HIGS). In fungi, this strategy has been reported in control of Fusarium 

verticillioides, F. graminearum, Puccinia striiformis f.sp. tritici and A. flavus 

[51]. Generally, these studies suggest that there exists a micro RNA (miRNA) or 

small interfering RNAs (siRNAs) trafficking channel between plant hosts and 

their fungal pathogens. This channel could, therefore, set up a new platform in 

the management of economically important fungal pathogens including 

aflatoxigenic A. flavus. With the now available A. flavus genome and the 

complete elucidation of the aflatoxin biosynthetic pathway, there exist possible 

targets in A. flavus that could be manipulated to either limit fungal growth or 

aflatoxin biosynthesis [52, 53]. Numerous gene function studies on the aflatoxin 

biosynthetic pathway have identified the transcription factor aflR as a potential in 

planta target against aflatoxin accumulation [54]. A follow-up study on this 

prediction by a research group in Kenya led to the transformation of aflR hairpin 

constructs into a susceptible tropical maize line resulting in a significant (14-fold) 

reduction in aflatoxin levels. While these results were commendable, the 

transgenic maize had an altered plant phenotype possibly due to HIGS mis-

targeting by aflRsi RNAs [55]. Consequently, this study creates a platform from 

which the effects of silencing other aflatoxin biosynthetic genes on aflatoxin 

levels could be evaluated.  

 

The major challenges of transgenic approaches are (a) poor farmers find it 

difficult to adopt new seed technologies, (b) additional regulatory barriers to 
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approval of biotechnology crops and (c) some distrust of transgenics among 

consumers. 

 

2. Post-harvest agricultural management of aflatoxins 

Post-harvest contamination with aflatoxin is due to infestation with aflatoxigenic 

Aspergillus species at pre-harvest stage, sub-optimal management practices and adverse 

conditions at post-harvest. High grain moisture also increases post-harvest aflatoxin 

contamination. It is, therefore, imperative to dry maize to a kernel moisture level of 13% 

and groundnuts to 7%, as aflatoxin levels increase in food during storage. Some of the 

predisposing factors to aflatoxin contamination in maize and groundnuts are excessive 

heat, high humidity, lack of aeration in stores and insect and rodent damage [56]. 

Improved post-harvest handling is, therefore, important for reduction in losses and 

aflatoxin contamination levels. Post-harvest management stages for maize and 

groundnuts include cleaning, grading, transportation, storage, processing, packaging and 

retailing at the market [56]. Good post-harvest strategies include harvesting at the right 

crop maturity, drying, cleaning of extraneous matter, and good post-harvest storage 

practices. Sorting to remove small, shrivelled seeds, stained seeds and damaged seeds 

can also help to minimize aflatoxin levels. Good agricultural practices include early 

harvesting, proper drying, physical separation, sanitation, proper storage, insect 

management and resistance breeding but the key factors are proper drying and proper 

storage. 

 

For post-harvest contamination, three strategies are used to manage aflatoxin 

contamination: (a) prevention of exposure to the toxin, (b) decontamination and (c) 

continuous surveillance and monitoring of moulds. Since high grain moisture increases 

aflatoxin contamination, it would be useful for smallholder farmers to have access to 

affordable drying devices. This is a focus of AflaSTOP, a project funded by the United 

States Agency for International Development with Meridian Institute as the lead 

implementing partner. In this project, ACDI/VOCA (Agricultural Cooperative 

Development International / Volunteers in Overseas Cooperative Assistance) a private 

nonprofit organization, is testing suitable, low-cost devices for drying and storage of 

maize and other products. The low-cost storage devices under evaluation are Purdue 

Improved Crop Storage bags, Grain Pro Super Grain Bag and traditional polypropylene 

bags. Drying devices being evaluated include a column dryer, a shallow bed dryer and a 

solar dryer [57]. The findings from this study could bring us closer to post-harvest 

aflatoxin reduction in stored grains. 

 

The challenges of post-harvest approaches are (a) some equipment are expensive and 

either require large capital investments or are unaffordable by the farmers, (b) it is 

difficult to ensure some of the technologies are widely shared by the affected 

communities as some are difficult to transport and (c) change in weather could affect the 

operation of some technologies like solar driers at the time of need.  

 

CONCLUSION 

 

It is clear from this review that there are a number of agricultural strategies for 

management of aflatoxins in crops but more research is still required. Strategies need to 
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be carefully evaluated to ensure that the aflatoxin problem is not exacerbated and that 

whatever solution is championed is also affordable and accessible to resource-poor 

farmers. A combination of strategies could be employed, such as good agricultural 

practices and affordable storage devices. There is also a need to isolate more atoxigenic 

strains of A. flavus in order to determine their efficacy in aflatoxin reduction. While 

further studies to evaluate genes through over expression and gene knockout approach 

could be promising, the acceptability of transgenic crops in sub-Saharan Africa remains 

a challenge due to consumer scepticism.  
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