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Plasmodium vivax malaria in the Brazilian Amazon 
- Malaria is still a major public health problem in Brazil, 
with 244,000 cases registered in 2012 (WHO 2013), with 
99.9% of them distributed through the Amazon Basin, 
including the states of Pará, Rondônia, Amazonas (AM), 
Mato Grosso, Amapá, Acre and Roraima (saude.gov.br/
sivep_malaria). In these areas, the spatial distribution 
of malaria is not homogenous and changes over time at 
individual, community, state and national scales (Tauil 
& Daniel-Ribeiro 1998, de Castro et al. 2006, 2007, 
Barbieri & Sawyer 2007, da Silva-Nunes et al. 2008, 
Oliveira-Ferreira et al. 2010). In the Brazilian Amazon, 
the instability of transmission is the dominant feature 
of malaria (Camargo et al. 1994), with exposed popu-
lations consisting mostly of migrants from malaria-free 
areas. In these individuals, the infection is generally ac-
companied by clinical symptoms of variable degrees of 
intensity. Nevertheless, during the past few years, epi-
demiologic studies carried out among individuals with 
long-term exposure to malaria in Brazil clearly show 
the existence of symptomless malaria infections (Cama-
rgo et al. 1999a, Alves et al. 2002, da Silva-Nunes et al. 
2008, Ladeia-Andrade et al. 2009).

Of the five species of malaria parasites known to 
infect humans, three species occur in Brazil: P. vivax, 
Plasmodium falciparum and Plasmodium malariae. Un-
til 1990, the prevalence of P. falciparum and P. vivax 
infections was similar with roughly 50% of each spe-

cies (Marques et al. 1986, Tauil & Daniel-Ribeiro 1998, 
Loiola et al. 2002), while the prevalence of P. malariae 
was very low. After that time, the incidence of both P. 
falciparum and P. vivax has decreased, probably due to 
the intensification of malaria control measures, which 
included early diagnosis and treatment (Loiola et al. 
2002). However, certain features of the biology of P. 
vivax give this species greater resilience than P. falci-
parum. Whereas P. falciparum parasites invade blood 
cells at various stages of development, P. vivax infects 
reticulocytes and the latter parasite species seems to be 
more transmissible at low parasite densities (Boyd & 
Kitchen 1937). Furthermore, P. vivax parasites are asso-
ciated with the early appearance of infective sexual stag-
es (gametocytes) in the blood and can remain in the liver 
as dormant hypnozoites responsible for relapses. These 
unique characteristics of the biology of P. vivax make its 
management and elimination particularly challenging. 
In fact, as control measures become more effective, the 
residual malaria burden is increasingly shifting towards 
P. vivax malaria (Mendis et al. 2001). Consequently, the 
number of P. vivax cases has increased over the years 
and this malaria parasite species is now responsible for 
roughly 80% of all malaria cases in the Brazilian Ama-
zon Region (Camargo et al. 1999b, Ladeia-Andrade et al. 
2009, WHO 2012). Although P. vivax malaria is often re-
garded as benign due to its low mortality, its morbidity is 
high, reducing the prosperity of affected populations. Of 
note, in the last few years, complicated P. vivax clinical 
malaria has been reported around the world (Tjitra et al. 
2008, Anstey et al. 2012), including the Brazilian Ama-
zon area (Alexandre et al. 2010, Lacerda et al. 2012).

Finally, in the Amazon, local P. vivax populations 
are extremely genetically diverse and also show substan-
tial genetic differentiation among populations (Ferreira 
et al. 2007, Rezende et al. 2009, 2010, Orjuela-Sanchez 
et al. 2010, Sousa et al. 2010). Beyond the complexity 
of parasite population, it has been proposed that asymp-
tomatic parasite carriage and massive environmental 
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Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an 
apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/
receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC 
to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, 
Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to 
PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and 
molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - 
and compare it with data from other parts of Latin America, as well as Asia and Oceania.

Key words: malaria - Plasmodium vivax - Duffy binding protein - naturally acquired antibodies - genetic variability



PvDBP: immunity and diversity • Taís Nóbrega de Sousa et al. 609

changes - that affect vector abundance and behaviour 
- are major contributors to malaria transmission in the 
epidemiologically diverse areas across the Amazon Ba-
sin (da Silva-Nunes et al. 2012). It may explain why ma-
laria has proved so difficult to control in the Amazon 
Basin, where transmission rates remain far below those 
recorded in tropical Africa.

The rationale behind P. vivax Duffy binding protein 
(PvDBP) as a blood-stage vaccine candidate - The inva-
sion of red blood cells (RBCs) by Plasmodium merozo-
ites - an essential event in the life cycle of all malaria 
parasites - is a highly complex, multistep process that 
is dependent on a cascade of specific molecular inter-
actions (Gaur et al. 2004). Despite this complexity, 
time-lapse microscopy of live parasites demonstrates 
that parasite entry into RBCs is a rapid process that is 
completed, on average, within 30 s after primary contact 
of the merozoite (Gilson & Crabb 2009). This multistep 
invasion process requires coordinated activities of host 
cell attachment, reorientation placing the apical end of 
the parasite adjacent to the erythrocyte membrane and 
active penetration of the host cell. Central to this pro-
cess is the establishment of a structure called a tight or 
moving junction, which forms a tight connection be-
tween the invading parasite and host cell membranes 
(Aikawa et al. 1978). For P. vivax, the formation of this 
irreversible junction is mediated by the PvDBP, a protein 
of approximately 140 kDa localised in merozoite apical 
organelles called micronemes (Wertheimer & Barnwell 
1989, Adams et al. 1990, 1992, Fang et al. 1991). Dur-
ing invasion, PvDBP is secreted from the micronemes 
and binds to its cognate host receptor on the reticulo-
cyte surface, the Duffy antigen/receptor for chemokines 
(DARC) (Wertheimer & Barnwell 1989, Adams et al. 
1990). Although P. vivax can infect and cause disease in 
DARC-negative individuals (Ryan et al. 2006, Cavasini 
et al. 2007, Menard et al. 2013), this situation seems to be 
rare and/or occur only in specific areas; so far, no other 
alternative ligand for P. vivax binding to reticulocytes 
has been identified, which makes the PvDBP one of the 
most promising P. vivax vaccine targets.

PvDBP belongs to the Duffy binding-like erythro-
cyte-binding protein (DBL-EBP) family, which encom-
passes other micronemal proteins, such as the DBP of 
the simian malaria parasite Plasmodium knowlesi and 
the P. falciparum ligands EBA-175, EBA-181/JESEBL 
and EBA-140/BAEBL (Sim et al. 1990, Adams et al. 
1992, 2001, Mayer et al. 2001, Gilberger et al. 2003). 
The members of the DBL-EBP family share a similar 
gene structure and this homology was used to define six 
extracellular regions (I-VI) followed by a type I trans-
membrane domain and a short cytoplasmic tail (Adams 
et al. 1992, 2001). Common to all EBPs are the two 
cysteine-rich domains (regions II and VI) in the ectodo-
main, with the erythrocyte ligand-binding domain lying 
within region II (DBPII) (Fig. 1). In P. falciparum, the 
EBPs and the reticulocyte-binding-like protein homo-
logues play an important role in phenotypic variation, 
allowing different parasite isolates to utilise alterna-
tive erythrocyte invasion pathways (Orlandi et al. 1992, 

Rayner et al. 2000, Triglia et al. 2001, Duraisingh et al. 
2003). Until recently, the gene that encodes PvDBP was 
described as single copy gene (Carlton et al. 2008). How-
ever, new whole genome sequences from field isolates 
provides evidence for a duplication of the dbp gene in P. 
vivax (Menard et al. 2013). Interestingly, the frequency 
of the dbp duplication was highest in geographical re-
gions where the highest frequencies of P. vivax-infected 
Duffy-negative people were reported. These data sug-
gest that PvDBP is rapidly evolving, possibly in response 
to constraints imposed by erythrocyte DARC-negativity 
in some human populations.

The PvDBP ligand domain (DBPII) is a 330 amino 
acid (aa) region characterised by 12 conserved cysteine 
residues (Chitnis & Miller 1994). The critical binding 
residues have been mapped to a central 170-aa stretch 
that includes cysteines 4-7 (Ranjan & Chitnis 1999, 
Singh et al. 2003, VanBuskirk et al. 2004b, Hans et al. 
2005, Batchelor et al. 2011, Bolton & Garry 2011, Sam-
path et al. 2013). This is the minimal domain responsible 
for binding to DARC-positive human reticulocytes. In 
2006, the structure of the P. knowlesi DBL domain was 
determined by X-ray crystallography and characterised 
as an all-helical, monomeric module containing 12 he-
lices spread over three distinct subdomains (SD1-SD3) 
that are stabilised by intra-SD disulfide bridges (Singh 
et al. 2006). Essential and invariant residues required 
for recognition of DARC on human erythrocytes were 
identified within a region on SD2 (Singh et al. 2003, 
2006, VanBuskirk et al. 2004b, Hans et al. 2005). Re-
cently, the crystal structure of DBPII was elucidated and 
a model was proposed of receptor recognition through 
PvDBP dimerisation upon receptor binding, leading to 
the formation of a complex composed of two PvDBP and 
two DARC molecules (Batchelor et al. 2011). Despite the 
conserved nature of regions spanning the DARC-binding 
groove and dimer interface, many residues in DBPII are 
variable and these polymorphisms map to multiple non-
functional regions of the protein (Tsuboi et al. 1994, Am-
pudia et al. 1996, Xainli et al. 2000, Kho et al. 2001, Van-
Buskirk et al. 2004b, Sousa et al. 2006, Gosi et al. 2008, 
Babaeekho et al. 2009, Batchelor et al. 2011, Premaratne 

Fig. 1: schematic drawing of the Plasmodium vivax Duffy binding 
protein gene structure. Exons are represented as blocks and drawn 
to scale. Exon 1 encodes a peptide signal sequence, exon 3 encodes a 
transmembrane domain and exons 4 and 5 encode a cytoplasmic do-
main. Exon 2 encodes a large protein domain that contains six regions 
(Roman numerals) as defined by amino acid (aa) sequence identity to 
Duffy binding-like erythrocyte-binding protein of other Plasmodium 
species (Adams et al. 1992). The erythrocyte-binding domain lies in 
the 5’ cysteine-rich region (region II) and the critical binding residues 
have been mapped to a 170-aa stretch between cysteines 4-7 (Ranjan 
& Chitnis 1999).
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et al. 2011, Chenet et al. 2012, Ju et al. 2012, 2013). Some 
of these naturally-occurring polymorphisms flank criti-
cal residues and it is suggested that protective antibodies 
that target the functional regions in DBPII lead to disrup-
tion of dimerisation and/or prevention of receptor binding 
(Batchelor et al. 2011). This pattern of diversity is consis-
tent with strong immune selection pressure on DBPII and 
suggests that allelic variation is an important mechanism 
of immune evasion (Tsuboi et al. 1994, Cole-Tobian & 
King 2003, Martinez et al. 2004, Sousa et al. 2010). Al-
though PvDBP is a vital ligand for blood-stage infection, 
its use for vaccine development poses significant chal-
lenges. These include: (i) brief exposure of PvDBP to 
the host immune system, due to its micronemal location 
(Adams et al. 1990) and the rapid kinetics of parasite in-
vasion (Dvorak et al. 1975, Gilson & Crabb 2009) and (ii) 
polymorphisms in PvDBP, which seem to be critical for 
the evasion of host immune response (VanBuskirk et al. 
2004a), as further discussed below.

Naturally-acquired antibodies against PvDBP - The 
goal in developing PvDBP as a vaccine directed against 
asexual blood-stage of P. vivax is to elicit an antibody 
response that inhibits parasite adhesion to DARC-pos-
itive human reticulocytes and thereby abrogate mero-
zoite invasion. Unfortunately, the available data on the 
functional properties of anti-PvDBP antibodies in hu-
man populations are still limited (Michon et al. 2000, 
Ceravolo et al. 2008, King et al. 2008, Souza-Silva et al. 
2010, Chootong et al. 2012), partly due to constraints on 
performing in vitro functional assays in the absence of 
a continuous culture method for P. vivax blood-stages 
(Ntumngia et al. 2012). Consequently, many field stud-
ies of immunity to PvDBP have focused on measuring 
antibodies to recombinant antigens, but paid less atten-
tion to approaches that evaluate functionally important 
immune mechanisms.

Anti-PvDBP IgG antibodies measured by conven-
tional serology - Given the limitations of performing 
functional assays, ELISAs using different recombinant 
PvDBP proteins have been useful in evaluating the level 
of PvDBP IgG antibodies in different endemic popula-
tions. Using conventional serology, we demonstrated that 
PvDBP is naturally immunogenic in the Amazon area 
and that the proportions of PvDBP IgG-positive subjects 
increased with exposure to malaria, reaching a peak in 
those subjects with long-term exposure in the Amazon 
(Table) (Ceravolo et al. 2005). Of importance, this study 
provided an additional insight by demonstrating for the 
first time that cumulative exposure is a determinant that 
acts independently of host age in the generation of an-
ti-PvDBP IgG response. In fact, we demonstrated that 
each additional year of exposure to malaria increased 
the probability of having anti-PvDBP IgG antibodies by 
2% (Souza-Silva et al. 2010). While these previous stud-
ies included subjects who were migrants from malaria-
free areas of Brazil - whose ages did not correlate with 
exposure to malaria - further studies were carried-out 
with native populations of the Amazon area (Kano et al. 
2012). In this area, a well-established frontier settlement 
located in AM, a significant proportion of the commu-

nity (50%) had acquired anti-PvDBP antibodies, with 
the subject’s age being the only strong predictor of se-
ropositivity to PvDBP. Together, these data reinforce the 
variety of malaria transmission patterns in communities 
from the Amazon area.

So far, few studies have investigated anti-PvDBP an-
tibody response in Latin America and data are still re-
stricted to endemic areas of Brazil and Colombia (Table). 
In general, the pattern of antibody response described 
in these studies corroborated our data that anti-PvDBP 
antibodies increase with exposure to P. vivax. In addi-
tion, PvDBP antibodies seem to be biased toward the 
cytophilic subclasses IgG1 and IgG3 (Tran et al. 2005, 
Maestre et al. 2010).

From our experience in the Amazon area, it has 
become evident that PvDBP has relatively low immu-
nogenicity, similar to what has been described in other 
epidemiological contexts. For example, in the Colom-
bian Pacific coastal region, an area of unstable malaria 
transmission and mainly composed of Afro-Colombian 
individuals, as well in the Caribbean Coast, less than 
40% of the total number of patients sampled responded 
to PvDBP (Michon et al. 1998, Herrera et al. 2005, Mae-
stre et al. 2010). This antibody response profile is quite 
different from those described in highly endemic areas 
for malaria, such as Papua New Guinea (PNG), where 
antibody responses to PvDBP seem to be much more 
common (60-80%) (Table) and reach a plateau at ages of 
15 years and older (Xainli et al. 2003). In the latter en-
demic regions, the proportion of individuals developing 
T cell responses to PvDBP increased rapidly within the 
first four years of life such that by five-nine years of age 
80% of children responded (Xainli et al. 2002). The cel-
lular response against PvDBP has not yet been evaluated 
in Latin America.

DBPII binding inhibitory antibodies (BIAbs) - Cur-
rently, few reports have examined functional antibodies 
in malaria-exposed populations and most of them were 
carried-out in the highly endemic areas of PNG (Michon 
et al. 2000, King et al. 2008), which might not be rep-
resentative of many P. vivax endemic regions. Conse-
quently, our goal was to characterise the DBPII BIAbs 
response in individuals from an area of markedly unsta-
ble malaria transmission, as found in the Brazilian Ama-
zon (Table). Our results indicate that long-term exposure 
to malaria in the Brazilian Amazon elicits DBP-specific 
antibodies that inhibit the binding of different DBPII 
variants to erythrocytes (Ceravolo et al. 2008, Souza-
Silva et al. 2010). However, this inhibitory activity was 
detected only in one third of malaria-exposed subjects, 
with a moderate correlation between DBPII BIAbs and 
ELISA anti-PvDBP antibodies.

Despite significant epidemiological and host/parasite 
genetic differences between the Amazon Basin and PNG, 
the relatively low frequency of DBPII BIAbs described 
among long-term residents of the Amazon area (~30%) 
was also found in PNG (Table). In fact, in the latter 
highly endemic area, less than 10% of immune children 
had acquired a high level of DBPII BIAbs (King et al. 
2008). It is very intriguing that in the Amazon and PNG, 
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the DBPII BIAbs response was remarkably stable over 
time (King et al. 2008, Souza-Silva et al. 2010). These 
findings imply that although the majority of people 
naturally-exposed to P. vivax do not develop antibodies 
that inhibit the DBPII-DARC interaction, once they are 
acquired, these inhibitory antibodies seem to be stable 
under continuous exposure to malaria transmission.

A plausible explanation for the low immunogenicity 
of PvDBP is the fact that this protein is localised in the 
micronemes until the beginning of the process of eryth-
rocyte invasion by merozoites (Adams et al. 1990). As 
a consequence of its brief exposure, the host immune 
system seems to have little opportunity to produces an 
efficient antibody response. However, the “just-in-time” 
hypothesis of PvDBP exposure (Singh et al. 2006) does 
not completely explain the large proportion of individu-
als who remain unresponsive to PvDBP after prolonged 
exposure to malaria. The reasons for this are not clear, 
but may relate to the complexity of the immune response, 
in terms of genetic diversity of both the parasite and hu-
man populations. With regard to the genetic diversity of 
the parasite, several studies now indicate the existence 
of strain-specificity in the natural immune response 
against PvDBP (Ceravolo et al. 2009, Cole-Tobian et al. 
2009, Chootong et al. 2012). In a study conducted dur-
ing a malaria outbreak outside of the Brazilian endemic 
area, we demonstrated that the majority of responders 
had developed inhibitory antibodies against the homolo-
gous DBPII sequence identified in the outbreak isolate 
(Ceravolo et al. 2009). These findings provided the first 
clear evidence that naturally-acquired inhibitory anti-
bodies to DBPII are biased towards a specific allele in 
individuals with no previous exposure to malaria infec-
tion (Ceravolo et al. 2009). In Thailand, an area of low 
unstable transmission of P. vivax, the inhibitory anti-
body responses against DBPII also correlated with ho-
mologous protection (Chootong et al. 2012). Similarly, 
a profile of strain-specific inhibitory activity was fre-
quently observed among asymptomatic children from 
PNG (Cole-Tobian et al. 2009).

Even though the current data clearly demonstrated 
strain-specific immunity, we and others have also de-
scribed strain-transcendent inhibitory responses to DBPII 
(King et al. 2008, Souza-Silva et al. 2010). In the Brazil-
ian Amazon area, only individuals with long-term expo-
sure to malaria (roughly 20 years) acquired DBPII BIAbs 
against different DBPII variants (Ceravolo et al. 2008). 
Similarly, only 9% of asymptomatic children residing in 
a P. vivax hyperendemic area had acquired a significant 
anti-PvDBP inhibitory antibody response that transcend-
ed strain-specificity (King et al. 2008). These findings 
highlight the complexity of the immune responses to DB-
PII, which includes both a strain-specific and strain-tran-
scending component (Cole-Tobian et al. 2009).

Besides PvDBP allelic variation, recent evidence 
suggests that host genetic polymorphisms might also 
affect humoral immunity against PvDBP (Maestre et al. 
2010, King et al. 2011). The most relevant finding was 
that DARC allelic polymorphisms are thought to affect 
the ability of anti-PvDBP antibodies to block parasite 
invasion (King et al. 2011). DARC is encoded by two 

codominant allele groups FY*A and FY*B, which dif-
fer by a single point mutation. Of particular interest is 
that we recently demonstrated that DBPII inhibitory 
antibody responses were approximately 50% lower in 
FY*A/FY*A and FY*B/FY*B homozygous individu-
als when compared with individuals heterozygous for 
FY*A or FY*B alleles, suggesting a gene-dosage effect 
(Souza-Silva et al. 2014). Due to the relevance of these 
findings for vaccines now in development, it would be 
pertinent to investigate whether such an association ex-
ists in other P. vivax malaria endemic countries. In this 
context, it would be relevant to determine if PvDBP 
non-responsiveness could be major histocompatibility 
complex-linked. So far, only a single study investigat-
ed the association between human leukocyte antigen 
(HLA) class II and PvDBP antibodies (Storti-Melo et al. 
2012). Although that study was unable to demonstrate 
an association between HLA type and PvDBP antibod-
ies, the low number of individuals studied (PvDBP IgG 
sera, n = 48) precludes any solid conclusions about the 
highly polymorphic HLA class II and PvDBP antibod-
ies. In this context, follow-up studies are currently in 
progress in the Amazon area (LH Carvalho, unpub-
lished observations).

Genetic diversity of PvDBP in the Amazon area - 
Analysis of the genetic variability of P. vivax isolates 
from the field revealed that the PvDBP binding domain 
(region II, DBPII) is highly polymorphic, similar to most 
blood-stage malaria vaccine candidates, which may fa-
cilitate parasite escape from host immune detection. 
Based on field-studies, it seems clear that this extensive 
diversity might hamper vaccine development, since vari-
able residues could alter immune recognition of the pro-
tein (Ceravolo et al. 2009, Cole-Tobian et al. 2009). Thus, 
for development of PvDBP-based vaccine it is important 
to assess the levels of DBPII genetic diversity among P. 
vivax field isolates. The first data on the variability of 
PvDBP were obtained for isolates of the parasite from 
PNG and Colombia (Tsuboi et al. 1994, Ampudia et al. 
1996). Further analyses showed that most of the variable 
residues lie within a 170-aa region of DBPII and, at that 
time, there was no evidence that variable residues could 
interfere with erythrocyte receptor recognition (Xainli 
et al. 2000). Later, the same authors confirmed the influ-
ence of DBPII polymorphism as a mechanism of immune 
evasion (VanBuskirk et al. 2004a). Aiming to contribute 
to efforts towards vaccine development, we initially in-
vestigated in the Brazilian Amazon those eight single 
nucleotide polymorphisms previously suggested to be 
involved in the immune recognition of PvDBP (Van-
Buskirk et al. 2004a). Brazilian P. vivax isolates showed 
variability in almost all residues and a strong association 
of residues at positions 417, 424 and 437, suggesting a 
synergistic functional effect of these aas, possibly con-
stituting a discontinuous epitope in DBPII (Sousa et al. 
2006) (Fig. 2). The synergistic effect of the duo 417 and 
424, including residue 419 were reinforced by the find-
ings that they are part of a block of high linkage disequi-
librium and show a clear signature of positive natural 
selection among Brazilian isolates (Sousa et al. 2010). In 
accordance, these three residues were found to be part of 
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an in silico DBPII predicted epitope that is recognised by 
DBPII BIAbs present in sera from PNG (Chootong et al. 
2010, Sousa et al. 2010).

Subsequently, we compared the DBPII diversity 
among P. vivax isolates from different countries world-
wide, including samples from the Brazilian Amazon. 
In general, high levels of haplotype diversity were ob-
served among isolates independent of the malaria ende-
micity (Nóbrega de Sousa et al. 2011). These data on the 
nucleotide diversity of DBPII also provided evidence that 
recombination plays an important role in determining 
the haplotype structure of DBPII (Martinez et al. 2004, 
Sousa et al. 2010). In addition, it was possible to demon-
strate that natural selection acts differentially across the 
DBPII sequence, with neutrally evolving codons as well 
as codons evolving under diversifying selection (Cole-
Tobian & King 2003, Martinez et al. 2004, Sousa et al. 
2010). Of importance, positive natural selection preferen-
tially acts on epitopes in DBPII, which also have greater 
nucleotide diversity (Cole-Tobian & King 2003, Sousa et 
al. 2010, Ju et al. 2012, 2013). This is in agreement with 
the hypothesis that immune selection is the major evolu-
tionary force that drives the generation of new PvDBP 
variants. In accordance with these findings, field-studies 
carried-out in different malaria endemic areas showed 

that naturally-acquired inhibitory antibodies to DB-
PII are biased towards a specific allele (Ceravolo et al. 
2009, Cole-Tobian et al. 2009). This is relevant because 
current vaccine development is based only on the DBPII 
haplotype of the P. vivax laboratory-adapted strain Sal-1 
(Yazdani et al. 2004, Arevalo-Herrera et al. 2005, More-
no et al. 2008). However, this haplotype has been found 
at only a low frequency in most Amazon regions and, of 
note, it seems to be largely restricted to some geographi-
cal areas of the world (Nóbrega de Sousa et al. 2011).

Recently, crystallographic and functional stud-
ies allowed the identification of the structural regions 
of PvDBP targeted by inhibitory antibodies (Chootong 
et al. 2010, Batchelor et al. 2011, Sampath et al. 2013). 
The findings suggest that some epitopes recognised by 
BIAbs lie close to the predicted DARC interaction site, 
suggesting that cause disruption of PvDBP dimerisation 
and/or prevention of PvDBP receptor binding (Batch-
elor et al. 2011, Sampath et al. 2013). Despite cumula-
tive knowledge about DBPII structure, there is limited 
understanding about the molecular basis for protection 
and immune evasion. Research to date has underlined 
the importance of the SD2 of DBPII for DARC binding 
and immune selection (Singh et al. 2006, Batchelor et al. 
2011, Sampath et al. 2013). Nevertheless, Siddiqui et al. 
(2012) showed that the SD3 is also important for binding 
to DARC. Furthermore, inhibitory murine monoclonal 
antibodies mapped to SD3 recognise epitopes that are 
strain transcendent (Siddiqui et al. 2012). Since this SD 
is relatively conserved it could form the basis of a strain-
transcending vaccine against P. vivax.

Aiming towards universal, strain-transcending anti-
PvDBP immunity, the current strategies of vaccine de-
velopment have been focusing on immune responses 
against more conserved DBPII epitopes. An interesting 
approach was based on the hypothesis that the poly-
morphic residues, which are not functionally important 
for erythrocyte-binding, but flank the receptor binding 
motif of DBPII, comprise variant epitopes that tend to 
divert the immune response away from more conserved 
epitopes (Ntumngia & Adams 2012). In this respect, these 
authors demonstrated that immunisation with a synthet-
ic antigen lacking the immunodominant DBPII variant 
epitopes enabled the development of immune respons-
es towards the more conserved neutralising epitopes, 
which are the potential targets of a strain-transcending 
immunity. Another promising vaccine approach should 
be immunisation with a multiple component vaccine 
representing the major DBPII haplotypes (Ntumngia et 
al. 2013). In this context, a preliminary analysis of the 
worldwide DBPII sequences allowed us to determine 
that seven haplotypes should be the minimum number 
of haplotypes to be included in a DBP-based vaccine of 
broad coverage (Nóbrega de Sousa et al. 2011).

Concluding remarks - PvDBP is likely to be exposed 
on the merozoite surface during invasion, enabling it to 
bind to its receptor and, thus, making it accessible to 
serum antibodies. While measuring antibodies to re-
combinant PvDBP by ELISA is a simple and robust pro-
cedure widely used in human population studies, it pro-

Fig. 2: Duffy binding protein (DBPII) dimeric structure. Subdomain 
(SD1) (sky blue), SD2 (dark blue) and SD3 (light blue). Critical bind-
ing residues are coloured yellow (Asn291, Tyr295, Asn296, Lys297, 
Phe299 and Val365, Lys366, Lys367, Arg368, Leu369, Phe373, Ile374, 
Ile376) (VanBuskirk et al. 2004b, Hans et al. 2005, Bolton & Garry 
2011, Sampath et al. 2013). Residues that form the putative sulfoty-
rosine-binding pocket at the dimer interface are coloured purple 
(Lys273, Arg274 and Gln356). Residues that make contact creating 
the dimeric architecture are coloured orange (Phe267, Leu270, Ile277, 
Tyr278, Val282, Tyr363 and Arg274, Glu249) (Batchelor et al. 2011). 
Polymorphic residues in Brazilian isolates are coloured red (N305N, 
R308S, L333F, K371E, N375D, R378R, G384D, E385K, K386N, 
H390R, S398T, T404R, N417K, I419M, L424I, W437R, I464I, Q486E, 
I503K) (Sousa et al. 2006, 2010). Images modelled in PyMol on the 
DBPII dimer structure (Batchelor et al. 2011).
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vides little functional information when used alone. As a 
consequence, field-studies on PvDBP immune response 
should include assays to evaluate the functional pro-
prieties of anti-PvDBP antibodies. Cross-sectional and 
cohort studies carried-out in the Amazon area provide 
evidence that the majority of people naturally-exposed 
to P. vivax do not develop antibodies that inhibit the DB-
PII-DARC interaction. Nevertheless, once they are ac-
quired, these inhibitory antibodies seem to be stable un-
der continuous exposure to malaria transmission. These 
results are intriguing and seem to be a common phe-
nomenon in other endemic areas, including those highly 
endemic areas of PNG, where most individuals have de-
veloped clinical immunity to malaria (King et al. 2008). 
The results presented here also provide strong evidence 
that DARC interaction site and epitopes on PvDBP have 
sufficient overlap for antibodies to disrupt dimerisation 
and/or inhibit binding (Batchelor et al. 2011, Sampath 
et al. 2013) and provide support for the role of allelic 
diversity in anti-PvDBP immune responses. Of note, 
while our findings point to allelic variation eliciting a 
strain-specific immunity, individuals with long-term ex-
posure in the Amazon area acquired DBPII antibodies 
that inhibit in vitro binding of different DBPII variants to 
erythrocytes. Future challenges include understanding 
why only few malaria exposed-individuals develop an 
immune response able to inhibit DBPII-DARC interac-
tion and to establish whether PvDBP inhibitory immune 
response predicts partial protection from infection and/
or disease, as suggested by others (King et al. 2008). We 
hope that these findings from unstable malaria transmis-
sion areas contribute to current efforts towards vaccine 
development and may facilitate future clinical trials in 
areas of unstable malaria transmission.
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