324 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 770(3): 324-338, May 2015

Intrusive versus domiciliated triatomines and the challenge of
adapting vector control practices against Chagas disease
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Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house in-
festation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence
and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we
examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and mea-
sured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as
well as for the design of more effective control strategies against a large variety of triatomine species. We suggest
that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domes-
tic species is that these are essentially qualitative and do not rely on quantitative variables measuring population
sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis
and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may
represent a key tool for decision-making and the design of vector control interventions.
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Chagas disease is a major public health problem in
the Americas, where it affects seven-eight million people
(WHO 2014). The pathogenic agent is a protozoan parasite,
Trypanosoma cruzi, mainly transmitted to humans and
other mammals through the contaminated faeces of blood-
sucking insects called triatomines (Hemiptera: Redu-
viidae), also known as “kissing bugs”. Control of Chagas
disease relies on the treatment of infected patients and pre-
vention of transmission is based mainly on vector control.

Currently, more than 140 species of triatomines are
recognised. Over half of them have been shown to be nat-
urally or experimentally infected with 7. cruzi, but all are
suspected to be able to transmit the parasite (or “serve as
vectors”) (Bargues et al. 2010). Nevertheless, not all the
triatomine species are considered important vectors of 7.
cruzi. Vector competence varies considerably between
the different species/populations of triatomines and de-
pends on multiple criterions. Among these, the level of
domiciliation, which is understood as the level of adapta-
tion to human and its domestic environment, is one of the
most important, as it defines the level of human-vector
contacts (Dujardin et al. 2002). Indeed, species highly
adapted to and able to colonise human dwellings are more
likely to actively contribute to the transmission of 7. cruzi
to humans than species that are only found in sylvatic
environment. While the domiciliation of triatomine spe-
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cies/populations is clearly a gradual evolutionary process
(Schofield et al. 1999), it has important implications for
the design and efficacy of vector control interventions.
To date, vector control is mainly achieved through indoor
residual insecticide spraying, initially designed to target
triatomine species living inside human dwellings and
highly adapted to the domestic environment (i.e. domicil-
iated or domesticated). However, it is becoming increas-
ingly clear that triatomine species presenting lower levels
of domiciliation are also playing an important role in 70
cruzi transmission to humans and thus need to be taken
into account by vector control programs in many regions.
The efficacy of conventional insecticide spraying may in-
deed be directly affected by the level of domiciliation of
triatomines and alternative control strategies thus need
to be considered against nondomiciliated species/popula-
tions. These populations are a potential source of contin-
uous house infestation and post-spraying re-infestation,
making the control by insecticide spraying unsustainable,
even in areas where transmission is primarily due to high-
ly domiciliated vectors. The level of domiciliation/intru-
sion of triatomine species thus needs to be clearly defined
in operative terms to allow for its precise evaluation and
the design of effective vector control interventions.

In this review, we examine how the domiciliation/
intrusion level of different triatomine species/popula-
tions has been defined and measured and discuss how
these concepts may be improved for a better under-
standing of their ecology and evolution, as well as for
the design of more effective control strategies against a
large variety of triatomine species.

Level of domiciliation of triatomine species

Triatomine species have for a long time been classi-
fied according to their adaptation to human dwellings.
According to Lent and Wygodzinsky (1979), the hab-
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TABLE I

Classification of triatomine species according to their relationship with human housing

Sylvatic species - Strictly found in sylvatic environment.

Intrusive species - Mostly sylvatic, but many adult specimens are reported inside human dwellings, probably attracted there
by light or introduced by passive carriage (marsupials, for instance). In this situation, there is no evidence of colonisation (eggs,
nymphs and exuviae).

Domiciliary species - Characterised by the presence inside houses or peridomiciles of adults and nymphs, eggs and exuviae,
which means that the complete cycle of the insect was occurring in domestic environment. The resulting colonies are not very
abundant and represent merely a tentative adaptation to houses. It is not necessarily a permanent situation and a domiciliary
species can progressively disappear from the houses without any control intervention.

Domestic species - The definition includes the aforementioned observations for domiciliary species, with an additional
criterion related to the type of geographic extension. It is no more a local, geographically restricted observation, but rather con-
cerns a more widely extended territory with obvious arguments supporting migration by passive carriage. It is, for instance, a
discontinuous geographic extension, with gaps apparently unexplained unless the human intervention is admitted. Importantly,
sylvatic populations/foci can also exist for the species considered as domestic, as it is well documented even for the highly do-

mesticated emblematic species, Triatoma infestans (Dujardin et al. 2002, Noireau & Dujardin 2010).

its of the various species of triatomines allow to divide
them into sylvatic and domestic species, with an inter-
mediate category of peridomestic species, which are oc-
casionally attracted into houses, but do not effectively
colonise them, and which thus feed on man only occa-
sionally. Dujardin et al. (2002) and Noireau and Dujardin
(2010) later refined these definitions and proposed four
different categories: sylvatic, intrusive, domiciliary and
domestic species (Table I). These definitions have been
the most widely accepted and used in the literature for
the classification of many triatomine species. In Table I,
we summarise how some triatomine species have been
classified and the type of data and observations that
helped defining their potential association with human
habitat. These species/populations were selected based
on their epidemiological significance and contribution
to 7. cruzi transmission to human. As can be observed
in Table II, their level of domiciliation appears highly
variable depending on the type of data collected by the
authors, their own interpretation and the study area.
Field collections by manual searches and/or community
participation are the most common type of studies, al-
lowing to establish conventional entomological indexes
including infestation index (percentage of houses with
triatomines), colonisation index (percentage of infested
houses with evidence of reproductive cycle: presence of
nymphs, but also eggs and/or exuviae), density index
(number of triatomines per house) and dispersion index
(percentage of localities infested) as the most commonly
used (WHO 1991). Infestation and density index have of-
ten been considered as indicators of the level of intrusion
of a species into the domestic habitat, while the colonisa-
tion index can be viewed as a measure of its domicilia-
tion/domestication. More recently, a visitation index has
been proposed (percentage of houses visited exclusively
by adult triatomines) to evaluate intrusion by adult bugs
(Zeledon 2003). As indicated in Table I, the peridomi-

cile is considered as part of the domicile by Dujardin et
al. (2002) and Noireau and Dujardin (2010), so that spe-
cies adapted to peridomestic areas, but not found inside
houses, are considered domiciliated/domesticated. How-
ever, some of these species have also been classified as
peridomestic (e.g., Tritoma sordida) or synanthropic by
other authors to differentiate them from those that are
also extensively found inside houses.

Population genetics studies based on morphometric
and molecular markers are also commonly used. Phy-
logeographic studies have been used to understand the
general distribution of species over wide geographic ar-
eas and finer scale studies have focused on evaluating the
relationships among populations from different habitats
(Gourbiere et al. 2012). A high gene flow between popula-
tions found inside dwellings and sylvatic environment (and
the concomitant lack of population genetic structure - i.e.,
panmixia) is indicative of an elevated dispersal of bugs
between habitats, hence a strongly intrusive behaviour.
Conversely, a low gene flow resulting in the genetic dif-
ferentiation of domestic and sylvatic populations suggests
a significant domiciliation/domestication of a population.
These approaches have been extensively used to assess the
population genetic structure of several species (Table II).

Interestingly, based on the observation of a reduced
sexual dimorphism in domesticated populations com-
pared to sylvatic ones, Dujardin et al. (1999) proposed
that morphometry may be used as an indicator of the
level of adaptation of a species to domestic habitat.
However, these observations were not associated with
a clear measure of adaptation or fitness of the popula-
tions to the domestic habitat.

The data presented in Table II indicate that the clas-
sification of triatomine association with human habitat
according to current definitions (Table I) is sometimes
subjective, depending on the type of data available to
establish the nature of the infestation process and this
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Seroprevalence

References

(7o)

Classification

Evidence

Country, region

Species

Sylvatic - Wisnivesky-Colli et al. (1993),

Bolivian and  Peridomestic collections of adults and nymphs.

Argentinean

Triatoma guasayana

Gajate et al. (1996),
Gurtler et al. (1999),
Noireau et al. (1999a),

Intrusion of adult bugs inside dwellings without evidence Peridomestic, with

of colonisation.

intrusion of adult
bugs inside human

Chaco

Bugs collected inside dwellings feed on human.

Canale et al. (2000),
Vazquez-Prokopec et al. (2005)

dwellings

Implicated in re-infestation post-spraying against 7. infestans.

Dorn et al. (2007),
Zeledon et al. (2012),
Waleckx et al. (2014),

Suspected or
incriminated vector

Essentially
sylvatic, with
Adults visiting

Adults occasionally visiting houses.

Southern
United States

Triatoma sanguisuga

Mainly adults collected inside houses, but some nymphs

have also been found in several occasions.

for several
autochtonous cases

of America

Garcia et al. (2015)

human dwellings

Reports of insect bites from 7. sanguisuga.

Frequent human blood meals.

of vectorial

transmission

a: higher seroprevalence may also be attributed to 7. dimidiata present in this region; b: seroprevalence may also be attributed to R. prolixus present in the same area (mixed colonies) as
reported by Feliciangeli et al. (2004); c: seroprevalence may also be attributed to Rhodnius pictipes and Rhodnius robustus present in the same area as reported by Chico et al. (1997); d: se-

roprevalence may also be attributed to Rhodnius rufotuberculatus present in the same area as reported by Depickere et al. (2011); e: species complex with two recognised cryptic species, 7.
sordida and Triatoma garciabeci (T. sordida group 2); f: seroprevalence may also be attributed to 7. infestans present in the same area as reported by Bar et al. (2002); g: species complex.
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may have important implications for an effective vec-
tor control. Indeed, while very few species have been
able to reach domestication [estimated at less than 5% of
all species following Noireau and Dujardin (2010)], most
show very variable capability to invade human housing.
It is clear that more objective (and quantitative) criteria
are needed to describe this process. We next focus on
three triatomine species that have been extensively stud-
ied to evaluate additional criteria which may be helpful
for a better understanding of infestation.

Case studies

Triatoma dimidiata - T. dimidiata is one of the most
important vector of 7. cruzi, distributed from central
Mexico throughout Central America, to Colombia, Ven-
ezuela, Ecuador and Peru (Dorn et al. 2007) (Figure). It
is actually a species complex, although the exact num-
ber of taxonomic groups to be considered is still debated
(Bargues et al. 2008, Dorn et al. 2009, Herrera-Aguilar
et al. 2009, Monteiro et al. 2013). This species complex
presents highly variable levels of adaptation to humans
housing, depending of the geographic region, but pos-
sibly also depending on the taxonomic group.

In Guatemala, populations are well domesticated
as evidenced by bug collections throughout the coun-
try showing high infestation and colonisation indexes
(Monroy et al. 2003a, b, Nakagawa et al. 2005). Hous-
ing quality and type are key factors affecting domes-
tic colonisation/infestation and in particular poor wall
plastering, which may offer a favourable habitat for bugs
(Bustamante et al. 2009). Population genetics studies
showed some conflicting results, with limited gene flow
in agreement with domestication in some cases, but also
significant gene flow between sylvatic and domestic
populations, suggesting dispersal (Calderon et al. 2004).
The analysis of the genetic structure of the population in
a single house further showed a great genetic heteroge-
neity suggesting polyandry and/or high levels of migra-
tion of the vector (Melgar et al. 2007).

Vector control with insecticide spraying has been rela-
tively effective in Guatemala, although some re-infesta-
tion has been occurring (Nakagawa et al. 2003b, Hashim-
oto et al. 2006). Dispersing sylvatic bugs may contribute
to re-infestation (Monroy et al. 2003b), as well as to the
seasonal variations in infestation that have been observed,
but the importance of sylvatic populations in domestic in-
festation is still unclear. More recent studies suggest that
integrated and community-based interventions may pro-
vide a better and more sustainable control of 7. dimidiata
in this region (Monroy et al. 2012, Pellecer et al. 2013,
Bustamante et al. 2014, de Urioste-Stone et al. 2015).

On the other hand, in the Yucatan Peninsula, Mexico,
T. dimidiata populations are one of the best-characterised
examples of a nondomiciliated but intrusive vector. Initial
observations indicated that adult 7. dimidiata transiently
infests houses on a seasonal basis during the months of
March-July (Dumonteil et al. 2002, 2009, Guzman-Tapia
et al. 2007, Payet et al. 2009). This infestation is respon-
sible for a seroprevalence of 7. cruzi infection in humans
of about 1-5% (Guzman-Bracho et al. 1998, Sosa-Estani
et al. 2008, Gamboa-Leodn et al. 2014). Population genet-
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Rhodnius ecuadoriensis

Geographic distribution of T. dimidiata, P. geniculatus and R. ecua-
doriensis.

ics and mathematical models describing the population
stage-structure as well as the dispersal of 7. dimidiata
indicate that house infestation is caused by the seasonal
dispersal of bugs from peridomestic and sylvatic habitats
surrounding the villages, while triatomine reproduction in
the domestic habitat (i.e., domiciliation) plays a negligible
role (Dumonteil et al. 2007, Gourbiére et al. 2008, Barbu
et al. 2009). Indeed, while nymphs may occasionally be
found in houses (Dumonteil et al. 2002), the low colonisa-
tion index (< 20%) rather suggests unsuccessful attempts
at colonising the domestic habitat by intruding bugs, pos-
sibly because of insufficient feeding (Payet et al. 2009).
Such poor feeding in the domestic habitat may be associ-
ated with sleeping habits in the region, as hammocks were
found to complicate bug access to a host and particularly
for nymphs (E Waleckx et al., unpublished observations).

Further modelling and field investigations of the spa-
tiotemporal infestation patterns indicated that houses lo-
cated in the periphery of the villages are significantly more
infested than those located in the village centre (Slimi et al.
2009, Barbu et al. 2010, 2011, Ramirez-Sierra et al. 2010).
Attraction by public lights also contributes significantly to
transient infestation (Pacheco-Tucuch et al. 2012), together
with the presence of domestic animals such as dogs and
chickens, while housing type and quality or socioeconomic
level do not play a significant role (Dumonteil et al. 2013).
Inhabitants are rather familiar with this seasonal invasive
behaviour of 7. dimidiata (Rosecrans et al. 2014).

In this situation, effective insecticide spraying would
require yearly applications within a narrow time window
of less than two months, which would be difficult to im-
plement and clearly unsustainable, while insect screens
may offer a sustainable and effective alternative (Du-
monteil et al. 2004, Barbu et al. 2009, 2011, Ferral et al.
2010). Environmental management of the peridomiciles,
i.e., the elimination of peridomestic colonies by cleaning
and insecticide spraying, was found to partially but du-
rably reduce house infestation and may thus be an im-
portant component of vector control interventions (Ferral

et al. 2010). Spatially targeted interventions may allow
for further optimisation of vector control (Barbu et al.
2011). Based on this, an ecohealth approach has recently
been tested at a small scale, based on a community-based
installation of window insect screens in bedrooms, with
or without education for improved peridomestic animal
management (Waleckx et al. 2015). Such integrated con-
trol strategy seems very promising for the sustainable
control of this intrusive vector in the Yucatan Peninsula.
Analysis of the genetic structure of 7. dimidiata in
Boyaca, Colombia, also indicated a low level of genetic
differentiation and a high level of exchanges of bugs
among domestic, peridomestic and sylvatic habitats
(Ramirez et al. 2005), suggesting that the situation ob-
served in the Yucatan Peninsula and Belize (Polonio et
al. 2009) may also be occurring in parts of Colombia.

Panstrongylus geniculatus - P. geniculatus is one
of the most widely distributed species of triatomine in
South and Central America (Leite et al. 2007) (Figure). It
is commonly considered as a sylvatic species frequently
flying to human habitations, probably attracted by light
(Lent & Wygodzinsky 1979). The intrusion of adult bugs
is well documented and collections of only adult speci-
mens inside dwellings have been reported in different
areas (particularly in the Amazon Basin, but not only)
in Venezuela (Serrano et al. 2008, Reyes-Lugo 2009),
Colombia (Angulo et al. 2012), Brazil (Naiff et al. 1998,
Fe et al. 2009, Maeda et al. 2012), Peru (Céaceres et al.
2002, Torres & Cabrera 2010), Bolivia (Depickere et al.
2011, 2012) and Argentina (Damborsky et al. 2001). The
main factors that cause P. geniculatus to increasingly
invade human dwellings seem to be the devastation of
the primary forests (for example for the construction of
human dwellings), overhunting and burning of forests,
all of which destroying the triatomines’ natural habitat
and causing them to seek alternative shelter and hosts
(Valente 1999). Although the intrusion of adult bugs and
the absence of colonisation seem to be the most com-
mon behaviours of this species, some events of domicile
colonisation have also been reported. Indeed, there are
some reports of nymphal stages and colonies of P. geni-
culatus found in peridomiciles and/or inside dwellings
in Venezuela (Reyes-Lugo & Rodriguez-Acosta 2000,
Feliciangeli et al. 2004, Rodriguez-Bonfante et al. 2007),
Brazil (Valente et al. 1998), Ecuador (Chico et al. 1997),
Bolivia (Depickére et al. 2011) and Colombia (Maestre-
Serrano & Eyes-Escalante 2012). Consequently, the spe-
cies is now increasingly considered as a species in the
process of domiciliation/domestication.

Interestingly, Aldana et al. (2011) found that the
sexual dimorphism of the isometric size of adults of P.
geniculatus was reduced in bugs collected in domestic
environment compared to bugs collected in sylvatic en-
vironments in Venezuela. In this study, the authors con-
sidered that this may be an indicator of domiciliation, as
proposed by Dujardin et al. (1999).

Additionally, there are reports of people being at-
tacked by this bug species inside their homes (Valente
et al. 1998, Reyes-Lugo & Rodriguez-Acosta 2000, Car-
rasco et al. 2005, Reyes-Lugo 2009), which has been
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confirmed by blood meal analyses (Feliciangeli et al.
2004, Carrasco et al. 2005). P. geniculatus has also been
increasingly identified as the likely responsible vector
in some acute cases of Chagas disease (Vega et al. 2000,
Valente et al. 2009, Cabrera et al. 2010, Rios et al. 2011)
in South America. Consequently, it is given more con-
sideration as a major vector of Chagas disease by vector
control programs, but no strategy has been specifically
defined against this vector and current data indicate that
a more precise evaluation of its level of intrusion inside
houses and of its potential for domiciliation/domestica-
tion is clearly needed so that these aspects may be taken
into account for the design of effective and sustainable
vector control interventions against P. geniculatus.

Rhodnius ecuadoriensis — R. ecuadoriensis is dis-
tributed from southern Colombia throughout eastern
Ecuador and in northern Peru, where it is considered an
important vector of 7. cruzi (Figure). However, studies
on its ecology and vectorial role have been limited and
report somewhat conflicting results. The species was
initially described infesting and colonising domiciles in
Peru and Ecuador and this was quickly extended to the
peridomestic habitat and R. ecuadoriensis was labelled
as a synanthropic species (Abad-Franch et al. 2002,
Cuba Cuba et al. 2002, 2003, Grijalva et al. 2005), in the
sense that it was domiciliated/domesticated. Frequent
blood feeding on humans from these bug populations
was also reported (Abad-Franch et al. 2002). However,
further studies showed that R. ecuadoriensis was also
abundant in sylvatic habitats, principally associated with
palm trees, as most Rhodnius species (Abad-Franch et
al. 2000, 2005, Grijalva & Villacis 2009, Suarez-Dava-
los et al. 2010, Grijalva et al. 2012), raising the question
of the relationship between its sylvatic and domestic/
peridomestic populations. The initial hypothesis was
that synanthropic populations were relatively isolated
from sylvatic ones, at least in southern Ecuador and
northern Peru, raising the possibility that synanthropic
populations may be eliminated by insecticide spraying
interventions (Abad-Franch et al. 2001, Cuba Cuba et al.
2002). However, such interventions were met with lim-
ited success, as a significant re-infestation was observed
following spraying (Grijalva et al. 2011), indicating that
vector control may result much more challenging.

Morphometric analysis of wing size and shape sup-
ported the presence of extensive exchanges of bugs among
habitats in coastal Ecuador, but conversely suggested a sig-
nificant population structuring in southern Ecuador, with
a low dispersal and exchange of bugs among habitats (Vil-
lacis et al. 2010). Such variability may be due to ecological
differences in these regions, but may also reflect intrinsic
differences in behaviour linked to genetic differences with-
in the species. Indeed, two phylogenetic clades have been
described in R. ecuadoriensis based on the cytochrome B
mitochondrial marker (Abad-Franch & Monteiro 2005) and
significant morphometric differences have been observed
as well (Villacis et al. 2010). The level of domiciliation of R.
ecuadoriensis may thus be variable, being more domicili-
ated in southern Ecuador and northern Peru and more syl-
vatic and intrusive in eastern Ecuador, although the factors
underlying these differences remain unclear.

As evidenced by the difficulties in controlling this
vector with indoor insecticide spraying (Grijalva et al.
2011), defining the exact level of domiciliation/intrusion
of the different populations of R. ecuadoriensis is still
needed to define effective vector control interventions in
the different regions where this species is present.

Revisiting the domiciliation process:
toward operational definitions for vector control

The classification of triatomine species/populations
into sylvatic, intrusive, domiciliary and domestic proposed
earlier (Noireau & Dujardin 2010) is useful from a general
evolutionary perspective. However, as evidenced in Table
IT and the examples detailed above, these theoretical con-
cepts may be challenged by the realities of vector control.

A major limitation of current criteria defining the as-
sociation of triatomine with human habitat is that these
are essentially qualitative (Table 1) and do not rely on
quantitative variables, leaving much to the subjective in-
terpretation of the data. This and the apparent regional
variability of domiciliation level of the different popula-
tions of a same species may be the main reasons why
some species/populations are classified differently by
authors as shown in Table II. For most species, a quanti-
fication of the ability of species/population to reproduce
and adapt in human habitat is needed for effective vec-
tor control. Indeed, indoor residual insecticide spraying
has been very effective in only two settings: domestic
Triatoma infestans in most of the Southern Cone coun-
tries and domestic R. prolixus in Central America. Thus,
several Southern Cone countries and regions have been
certified (or are in the process) as free of 7. infestans
vectorial transmission and similarly in Central America
with R. prolixus (Schofield et al. 2006). This success
is largely due to the fact that these 7' infestans and R.
prolixus populations were exclusively domesticated and
introduced in these countries (i.e., with no sylvatic popu-
lations), which considerably limited the possibilities for
re-infestation following spraying. On the other hand, the
control of most other triatomine species/populations has
been more challenging, mostly because domestic popu-
lations remain connected to sylvatic populations, which
can then contribute to re-infestation. The same fact
mostly explains why, in areas where 7. infestans sylvatic
foci exist, the elimination of house infestation is jeop-
ardised. Indeed, while 7. infestans has been described
as one of the most domesticated triatomine species, the
persistence and re-infestation of houses by this species
in the Andean region can be attributed, at least in part, to
the dispersal of bugs from sylvatic populations (Noireau
et al. 2005, Ceballos et al. 2011, Brenicre et al. 2013). In
the Andes, these have been found to be well established
in sylvatic habitats over an extensive region (Buitrago et
al. 2010, Waleckx et al. 2011, Bremond et al. 2014) and
to feed on humans relatively frequently (Buitrago et al.
2013). Dispersal of these sylvatic bugs towards houses
for re-infestation will thus need to be taken into account
for an effective control, even in the case of this emblem-
atic highly domesticated species.
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From the perspective of vector control, it is thus of
major importance to determine precisely three aspects of
the relationship of triatomines with humans: (i) the pres-
ence of sylvatic populations of triatomines, (ii) the level
of intrusion of these sylvatic populations in peridomiciles
and inside domiciles and (iii) the level of domiciliation or
domestication in peridomiciles and inside houses. Indeed,
this information should guide vector control program in
their decision-making over the design of evidence-based
interventions to ensure their effectiveness. A significant
domiciliation or domestication inside dwellings would
suggest that indoor insecticide spraying and/or housing-
improvement interventions aimed at reducing the suit-
ability of the domestic habitat would be effective in re-
ducing/eliminating house infestation as was the case with
T. infestans (Schofield et al. 2006). On the other hand, a
high level of intrusion inside dwellings would rule out
indoor insecticide spraying as a key component of vec-
tor control, which would rather need to focus on limiting
triatomine entry inside houses. Interventions based on
window insect screens or insecticide-impregnated cur-
tains (Herber & Kroeger 2003, Barbu et al. 2009, 2011,
Ferral et al. 2010, Waleckx et al. 2015) would thus be
recommended. In any case, community education should
also be considered as part of all vector interventions to
strengthen their sustainability. Importantly, long-term
entomological surveillance should be implemented to de-
tect potential changes in vector population dynamics due
to the adaptation or replacement of vector species, as well
as the emergence of insecticide resistance.

Analysis of Table II and of the cases studies present-
ed provides clues to the type of empirical and theoreti-
cal data needed to appreciate the levels of intrusion and
domiciliation of triatomine species. As can be seen, the
primary source of evidences comes from field studies
based on timed-manuals collections, traps and sensors
and/or community participation to document infestation
patterns in different habitats. However, such studies may
be misleading if too limited in scope, geographic cov-
erage and sample size, as seen with the initial studies
of R. ecuadoriensis, which suggested that it was synan-
thropic. Additionally to the collections in the domestic
habitat, exhaustive searches in peridomestic and sylvatic
habitats are needed for a complete description of triatom-
ine distribution. Infestation data at different geographic
scales is critical, with in depth studies limited to a small
number of villages providing precise data on population
structure and demography, complemented with larger
scale studies including many villages, to allow for gen-
eralisation over large regions. The establishment of the
level of domiciliation/intrusion of triatomines in the dif-
ferent habitats should be properly done at the same geo-
graphic scale as that of vector control intervention, since
species can present regional differences in their level of
domiciliation. In addition, while most studies are based
on a single time-point, longitudinal studies clearly pro-
vide a more complete description of the infestation dy-
namics and its potential seasonal variations (Dumonteil
et al. 2002, Schettino et al. 2007, Payet et al. 2009).

The definitions in Table I are rather subjective and
lack clear “thresholds” between the different domicilia-
tion levels to objectively classify the triatomine popula-
tions in any of the categories. The classical entomologic
indexes mentioned above may be seen as attempts to pro-
vide a quantitative evaluation of the domiciliation status
of triatomines. However, they do not provide a clear de-
scription of the level of adaptation to human habitat. For
example, while the colonisation index is often taken as
indicative of the domiciliation/domestication of a spe-
cies/population, it actually falls short of demonstrating
the occurrence of the complete reproductive cycle of the
bugs, nor of its sustainability over time. Also, nymphs
may reach houses by walking or may have emerged from
eggs released by a visiting female. Similarly, the visita-
tion index does not take into account seasonal intrusion
or may be biased by a low detection of nymphs.

Population genetics analysis leading to the charac-
terisation of population genetic structure, population
assignment and assessment of gene flow can also shed
some light on bug dispersal among habitat and on domi-
ciliation (Gourbiere et al. 2012). However, these studies
remain costly and technically challenging and more ap-
propriate for basic research than for vector control pro-
grams. It is also worth noting that the genetic structure
strictly depends on the molecular clock of the genetic
markers used and these needs to be carefully selected
to provide reliable information. Indeed, conflicting re-
sults may be obtained depending on the methods used
to infer gene flow among populations, as observed for
T. infestans (Brenicre et al. 1998). Similarly, other types
of molecular studies, such as the identification of blood
feeding sources and profiles are central to further evalu-
ate and quantify the risks of transmission of 7. cruzi to
humans (Dumonteil et al. 2013, Waleckx et al. 2014), but
may be limited to a research setting. On the other hand,
the analysis of infestation risk factors may be useful and
can be applied to entomological data from very large
number of houses from surveillance program (Camp-
bell-Lendrum et al. 2007), but the evidence provided is
very indirect, so often insufficient to determine the level
of intrusion/domiciliation.

Finally, the modelling of vector population dynamics
and 7. cruzi transmission provides a very powerful way
of analysing field collection data, as it allows quantify-
ing the effects of bug dispersal (i.e., intrusion) and de-
mography (i.e., domiciliation) on the infestation process
and transmission of 7. cruzi, as well as anticipating the
potential efficacy of control strategies when empirical
approaches are difficult for practical, financial or ethical
reasons. An interesting example in the field is the model-
ling of 7. dimidiata source-sink dynamics in the Yucatan
Peninsula, that provided quantitative evidences that al-
though nymph stages were occasionally detected inside
houses, such limited colonisation was not compatible
with an effective domiciliation, as domestic populations
were not self-sustainable, but rather strictly depended on
seasonal intrusion of adult bugs (Gourbiére et al. 2008,
Barbu et al. 2009, 2010, 2011). Such models can easily
be adjusted to a variety of bug collection data from field
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studies [see Nouvellet et al. (2015) for a review] and
sensitivity analysis can provide (theoretical) thresholds
for both intrusion/domiciliation of bugs populations, as
well as for the transmission of 7. cruzi to humans (Ras-
calou et al. 2012, Nouvellet et al. 2013). Setting up more
(“Leslie” or “Lefkovitch”) (Caswell 2001) matrix mod-
els of triatomine’s life history and population dynamics
would also lay the foundations for micro-evolutionary
studies. In fisherian optimality approaches (Roff 2010),
this type of modelling indeed allows identifying the fit-
ness value of a given strategy according to the complete
life history it corresponds to. Direct comparisons be-
tween the fitness values of alternative strategies then
provide an objective and quantitative way to predict the
evolutionary “optimal” strategy. More elaborated de-
scription of the meta-population dynamics (Gourbiere &
Gourbiere 2002), the nonlinear ecological (e.g., compet-
itive) interactions and/or the genetic determinism of the
strategies can be accounted in identifying evolutionary
dynamics (Meszena et al. 2001, Dieckmann et al. 2002),
potentially leading to more complex insect life-histo-
ry evolutionary dynamics according to frequency and
density-dependent fitness values (Gourbiére & Menu
2009). These approaches are barely used to understand
triatomine’s evolution [but see Menu et al. (2010) and
Pelosse et al. (2013)], while they could provide critical
quantitative insights into the domiciliation of triatomine
or their adaptive response to control interventions, two
issues that are critical to our understanding of the ecol-
ogy, evolution and control of Chagas disease.

Concluding remarks

While domiciliation is clearly a gradual evolutionary
process, we argued here that more precise evaluations of
the level of adaptation of triatomine species to human
habitats are needed for the optimisation of vector control.
While only a few species have been able to effectively
adapt to human housing, most remain connected to syl-
vatic populations and show variable levels of intrusion.
Such behaviour requires the design of specific vector con-
trol interventions targeting this intrusion process, rather
than insecticide spraying which only targets domesticated
triatomine populations. Most current approaches used to
assess triatomine association with human habitat, based
on field and laboratory studies, provide insufficient infor-
mation on the level of domestic adaptation of triatomines.
Further analysis and modelling of field data can provide
quantitative estimates of population persistence and fit-
ness, shed new light on the domiciliation process of tri-
atomine and may represent a key tool for decision-making
and the design of vector control interventions.
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