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Abstract 

Tuberculosis (TB) is the main infectious disease causing 1.8 million deaths worldwide every year and 
represents a principal cause of mortality resulting from a bacterial infection. The emergence of 
multidrug-resistant strains and lack of effective anti-TB drugs are threatening the future control of TB. 
The present multidrug regimen against TB needs daily administration for at least 6 months, and patients 
often fail to follow this complex regimen for such a long interval, thus leading to patient non-compliance 
and treatment related side effects. To avoid daily dosing, application of nanotechnology is a promising 
solution by virtue of sustained drug release. Nanotechnology-based rational targeting may improve 
therapeutic success by limiting adverse drug effects and requiring less frequent administration 
regimens, ultimately resulting in higher patient compliance, and thus attain higher adherence levels. 
Today, the pipeline of potential new treatments consists of several compounds in clinical trials or 
preclinical development with promising activities against sensitive and resistant Mycobacterium 
tuberculosis strains. Encapsulation of existing anti-TB drugs into nano-delivery systems and introduction 
of new drugs in combination treatment for all forms of tuberculosis have resulted in novel treatments 
with more effectiveness and reduced side effects. 
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INTRODUCTION 
 
Tuberculosis (TB) is one of the significant 
contagious diseases worldwide and its frequency 
is increasing principally in association with AIDS 
pandemic. TB is not an addition in the recently 
discovered array of diseases but an ancient 
human disease that dates back to decades, 
however still it can be enumerated as one of the 
most prevalent and life threatening disease [1]. 
Despite the accessibility to cost saving and 
effective medication, TB is still held responsible 
for countless cases of active diseases and 
innocent avoidable deaths worldwide [2].  

 
Unfortunately, the heartbreaking failure is the 
inability to cope up with the prevailing drug 
resistant strains of TB, examples of which are 
multi drug resistant (MDR) TB and extensively 
drug resistant (XDR) TB which are acutely 
adverse and life threatening [3]. Due to wide 
spread MDR-TB strains, world has encountered 
painful failure in wiping away this disease 
completely. It has been generally determined that 
patients without a fragment of hope and totally 
down-hearted may not continue the therapy 
because of side effects, prolong treatment, or 
relief of the symptoms. 

http://www.tjpr.org
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Strictly speaking, TB is one of such unfortunate 
diseases for which very limited antibiotics are 
discovered and very few are in pipeline. Figure 1 
shows some of the major milestones in the 
discovery and development of drugs and 
regimens for TB. Rifampicin (RIF), isoniazid 
(INH), pyrazinamide (PYZ), and ethambutol 
(EMB) are the primary most choices for the 

clinical disease management. Internationally 
acknowledged 90 % efficient, authentic treatment 
of active tuberculosis with HIV dormant consists 
of 6 months chemotherapy regimen using a 
combination of 4 drugs (RIF, INH, EMB, PYZ) 
daily for two months followed by RIF and INH for 
4 months either daily or three times per week [4]. 

 

 
Figure 1: History, discovery and development of Anti-TB drug regimens 
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First line therapy is a refined combination of 
these 4 drugs with addition of streptomycin 
(STR). For more advanced complex drug 
resistant strains MDR-TB and XDR-TB, 
suggested treatment includes the 
recommendation of any fluoroquinolone, together 
with at least one of three second-line injectable 
anti-TB drugs i.e. amikacin and capreomycin [5]. 
Targeted sites, doses, pharmacological and 
adverse effects of anti-TB drugs are summarized 
in Table 1. 
 
Treatment of TB is composite and is becoming 
more and more composite with the emergence of 
MDR and HIV infection. Daily administration of 
combined antibiotic therapy of TB for at least six 
months may cause the early ending of treatment 

due to side effects or alleviation of primary 
symptoms which may lead to MDR-TB and XDR-
TB. Drug delivery systems using encapsulation 
technology is likely to perform its role by 
formulating anti-TB drugs into sustained release 
systems. Hence, encapsulation of current anti-TB 
drugs into nano delivery systems should be 
viewed to increase drug concentration at infected 
sites, improve their therapeutic index, reducing 
toxic effects and extent of treatment [6].  
 
The aim of the present review is to highlight the 
potential advantages of these nanoparticles 
significant to the treatment of TB. Moreover, the 
safety and efficacy of new drugs in addition to an 
optimized standard therapy for the treatment of 
multidrug-resistant TB, also discussed. 

 
Table 1: Current anti-TB drugs therapy in clinical use and their targets 
 

Drug Daily dose Targeted site Effects Adverse  Effects 

1st Line drugs     

Isoniazid 5 mg/kg 
(≤300 mg) 

Enoyl-acyl carrier 
protein reductase 
(also called InhA) 

Inhibits the 
biosynthesis of 
mycolic acids 

Rash, fever, jaundice,  
peripheral neuritis, 
hypersensitivity and 
haematological 
reactions 

Rifampicin 10 mg/kg 
(≤600 mg) 

Subunit of DNA-
dependent RNA 
polymerase 

Inhibition of RNA 
synthesis 

Rash, fever, nausea, 
vomiting and hepatitis 

Pyrazinamide 15-30 mg/kg  
(≤ 2 g) 

S1 component of 30s 
ribosomal subunit 

Inhibits translation 
and trans-
translation 

Jaundice, hepatitis 
and hyperuricemia 

Ethambutol 15-25 mg/kg 
(≤1.2 g) 

Arabinosyl 
transferases 

Inhibits 
arabinogalactan 
biosynthesis 

Optic neuritis, rash 
and GIT upset 

2nd-Line drugs     

Streptomycin 15 mg/kg 
(≤ 1 g) 

S12 and 16S rRNA 
components of 30S 
ribosomal subunit  

Inhibits protein 
synthesis 

Ototoxicity, 
nephrotoxicity, 
paresthesia and 
dysfunction of the 
optic nerve  

Kanamycin 15 mg/kg 
(≤ 1.5 g) 

30s ribosomal 
subunit 

Inhibits protein 
synthesis 

Ototoxicity and 
nephrotoxicity 

Amikacin 15 mg/kg 
(≤ 1.5 g) 

30s ribosomal 
subunit 

Inhibits protein 
synthesis 

Ototoxicity and 
nephrotoxicity  

Capreomycin 15-30 mg/kg 
(≤ 1 g) 

Inter bridge B2a 
between 30s and 50s 
ribosomal subunit 

Inhibits protein 
synthesis  

Hearing loss, tinnitus, 
eosinophilia, transient 
proteinuria, and 
nitrogen retention 

Para-aminosalicylic 
acid 

10-12 g Dihydropteroate 
synthase 

Inhibits folate 
biosynthesis 

GIT disturbance, High 
fever Hypersensitivity, 
and hematological 
abnormalities 

Cycloserine 15-20 mg/kg 
(≤ 1 g) 
 

D-alanine racemase 
and ligase 

Inhibits 
peptidoglycan 
synthesis 

Most commonly 
involve the CNS 

Fluoroquinolones 
(Gatifloxacin & 
Moxifloxacin) 

400 mg/kg 
(≤ 2 g) 
 

DNA gyrase and 
topoisomerase IV 

Inhibits DNA 
supercoiling 

GIT discomfort, 
headache, dizziness 
and rashes 
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NANO CARRIER SYSTEMS 
 
Nanotechnology and Nano science studies are a 
warm-heartedly welcomed revolution in a modern 
era of advancement. These studies have 

dramatically emerged during the last few 
decades in a vast field of product domains and 
have captured enormously generous attention 
due to their compact size properties [7].  
 

 
Table 2: Nanoformulations of anti-TB drugs 
 
Route of 
administrati
on 

Drug delivery 
system 

Animal 
model 

Observation Significance of study Ref 

Oral  SLN Mice RIF, INH & PYZ SLNs were 
detected 8 days in plasma and 
10 days in organs rich in MPS 

5 oral doses of SLNs at every 
10th day completely 
suppressed bacterial load. 
Improved bioavailability and 
reduced dosing frequency 

[8] 

Oral  SLN Rats t1/2, Cmax and AUC increased  
with respect to that achieved 
with the free drug 
 

There was 6 times increased 
bioavailability in plasma and 4 
times in brain. INH-SLN 
showed a 3 times higher 
 LD50 in comparison to free 
INH  

[9] 
 

Aerosol SLN Rats The viability of alveolar 
macrophages and alveolar 
epithelial type II cells  was 
above 80% with RIF-SLNs 

RIF-SLN exhibited low toxicity 
comparatively to free drug 

[10] 
 

Oral PLGA 
Polymeric  
nanoparticles 

Mice Encapsulated RIF was 
detected in plasma up to 6 
days whereas INH and PYZ for 
9 days 

No TB was detected in tissues 
after administration of 5 doses 
of drug-loaded nanoparticles 

[11] 
 

Oral PLG 
Polymeric 
nanoparticles 

Guinea 
pigs 

Nanoparticles increased 
plasma concentration of RIF 
for 6-7 and 13-14 days for INH 
and PYZ 

Increase in bioavailability of 
drugs and therapeutic effects 
were achieved even at low 
frequent dosing 

[12] 
 

Oral  Alginate 
based 
Polymeric 
nanoparticles 

Mice  Therapeutic concentration of 
RIF, INH and EMB 
nanoparticles  was observed 
for 7-11 days in plasma and 15 
days in lungs, liver and spleen   

3 oral doses of polymeric 
formulations at 15 days 
interval resulted in complete 
bacterial clearance from 
organs compared to 45 
conventional doses of free 
drugs. Increased bioavailability 
was observed  

[13] 
 

I/V Manno 
sylated gelatin 
nanoparticles 

Mice INH loaded nanoparticles 
resulted in significant reduction 
in bacterial counts 

Nanoparticles showed almost 
9-fold higher drug content in 
lungs and 6-fold higher in liver 

[14] 
 

Aerosol PLG 
Polymeric 
nanoparticles 

Guinea 
pigs 

Sustained therapeutic drug 
levels were observed for 6-8 
days in plasma and 11 days in 
lungs 

Increase in bioavailability. No 
TB was detected after 5 doses 
of treatment at every 10th day 
whereas 46 daily doses of free 
drugs were required to attain 
equivalent effects.  

[15] 
 

S/C PLG 
Polymeric 
nanoparticles 

Mice Sustained therapeutic drug 
levels were observed for 32 
days in plasma and 36 days in 
lungs/spleen  

Nanoparticles increased the 
drug bioavailability and 
reduced dosing frequency 
 

[16] 
 

I/V and 
intratracheal 

Niosomes Rats AUC study of RIF niosomes 
indicated a higher organ to 
serum AUC ratio as compared 
to free drug 

RIF-niosomes exhibited 
significant targeted delivery 

[17] 
 

I/V Liposomes Mice 
 

Increased activity of amikacin 
against MTB and improved t1/2 
of the drug encapsulated 
liposomes compared with the 
free drug ones 

Reduced dosing frequency [18] 
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Nanoparticle-based delivery systems propose a 
number of advantages and give way to a bright 
possibility of introducing different routes of drug 
administration for better management of the 
disease. Numerous attempts have been made by 
scientists to encapsulate anti-TB drugs into 
different types of nanoparticles. These 
formulations have shown better results in terms 
of bioavailability, dosing frequency, safety and 
duration of treatment when compared with 
standard therapy Table 2. 
 
Types of nanoparticles 
 
(i) Liposomes 
 
Liposomes are accurately best defined as tiny 
spherical lipid globules with a bi-layered 
membrane structure consisting of natural or 
synthetic amphiphilic lipid molecules with an 
aqueous interior [19]. Liposomes are taken up by 
macrophages, release their contents 
intracellularly, and are effective against 
intracellular pathogens, e.g., M. tuberculosis. 
Deol et al developed liposomes (Stealth®) which 
were more effective than free drugs for targeted 
delivery to the lungs. The free INH given at the 
therapeutic dose of 12 mg/kg and RIF at 10 
mg/kg reduced colony forming unit (CFU) to 4.5 
and 4.3 log units in lungs, while the same doses 
of INH and RIF liposomes (Stealth®) reduced 
colony forming unit to 3.9 and 3.8 log units, 
respectively [20]. Labana et al developed 
liposomes containing an active targeting ligand 
O-steroyl amylopectin for encapsulation of RIF 
and INH. The formulation also exhibited a 
sustained drug release for more than 120 h, 
compared to 10 h for the free drugs and reduced 
the daily administration to only once a week [21]. 
Liposomes as nanocarrier drug delivery systems 
have also shown significant development in 
vaccines design for the treatment and prevention 
of TB. DNA vaccine combination expressing 
MTB heat shock protein 65 (HSP 65), IL-12, 
Ag85B-ESAT-6/CAF01 are the well-known 
examples of a vaccine liposomal-based 
technology with promising results [22]. 
 
(ii) Nanoemulsions 
 
Nanoemulsions are defined as transparent or 
translucent water-in-oil (w/o) or oil-in-water (o/w) 
droplets with 10-100 nm mean droplet diameter 
[23].  
 
Thermodynamically stable nanoemulsion of 
ramipril with mean particle size of 80.9 nm and 
polydispersity index of 0.271 was developed for 
oral administration. The relative bioavailability of 
ramipril nanoemulsion to that of conventional 

capsule and drug suspension were 229.62 and 
539.49 %, respectively [24]. Ahmed et al 
developed various parenteral o/w nanoemulsions 
of RIF with excellent stability over 19 months 
[25]. 
 
(iii) Solid lipid nanoparticles  
 
Back then in the middle 1990’s, Solid lipid 
nanoparticles (SLNs), the sub-micron colloidal 
carrier, were formally introduced as a novel drug-
carrier system for oral deliver [26]. SLNs have 
captured enormous attention by various 
researchers and companies owing to the 
controlled drug delivery, enhancement of 
bioavailability of entrapped drugs and/or 
improvement of tissue distribution and targeting 
of drugs. There is a very less concern about their 
safety and biocompatibility as they are generally 
made from physiological lipids and surfactants 
[27].  
 
Durgaramani et al designed RIF loaded SLNs 
with highest encapsulation efficiency of 78.79 % 
and in vitro release studies showed suitability of 
RIF-SLNs for the treatment of TB [28]. In 2013, 
Indu Pal Kaur incorporated RIF and INH into 
SLNs and studied the percent degradation of RIF 
in these combined SLNs (RIF-SLNs + INH-
SLNs). The results showed increased 
bioavailability and prolong release of RIF by 
decreasing its degradation in presence of INH 
[29]. 
 
(iv)  Polymeric nanoparticles  
 
Most of the polymeric nanoparticles are bio-
degradable and biocompatible and are preferred 
for the delivery of nano materials. Polymeric 
nanoparticles have been scrutinized to deliver a 
variety of antimicrobial agents to medicate 
various infectious diseases and have shown 
great therapeutic efficacy [30].  
 
RIF, INH and STR loaded polymeric 
nanoparticles with elevated antimicrobial activity 
were prepared by Anisimova et al where 
encapsulated INH showed increased intracellular 
concentration of 4-8 folds, STR 7 folds and RIF 
22-25 with respect to the extracellular 
concentration [31]. Correspondingly moxifloxacin 
loaded poly (n-butyl cyanoacrylate) nanoparticles 
delayed intracellular MTB growth at 0.1 µg/mL, 
whereas free moxifloxacin has same effect at 1 
µg/mL [32]. Clemens et al employed meso-
porous silica nanoparticle drug delivery systems 
either coated with a polyethyleneimine to release 
RIF or equipped with cyclodextrin based pH-
operated nanovalves that open only at acidic pH 
to release INH into MTB-infected macrophages. 
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Polyethyleneimine coated meso-porous silica 
nanoparticle demonstrated much greater loading 
and potency of RIF against MTB infected 
macrophages than uncoated. INH delivered by 
meso-porous silica nanoparticle killed MTB within 
macrophages more adequately than an 
equivalent amount of free drug [33]. To enhance 
the intracellular bioavailability of INH a highly 
hydrophobic citral-derived INH analogue named 
JVA was encapsulated in PLGA nanoparticles. 
Results suggested that JVA-NPs diminish 
pathogen proliferation and also increased MTB 
killing inside macrophages due to increase 
bioavailability of INH [34]. 
 
(v) Niosomes 
 
Described as non-ionic surfactant vesicles 
having a bi-layer structure formed by self-
assembly of hydrated surfactant monomers. 
Niosomes are delivering drugs directly to the 
body part where the therapeutic effect is 
required. This reduces the dose frequency to 
achieve the desired effects which subsequently 
decrease the side effects [35].  
 
INH loaded niosomes were prepared by Roopa 
Karki. In vivo drug disposition study was 
evaluated in normal healthy albino rats. Niosomal 
drug delivery exhibited lower toxicity and less 
accumulation of drug than the free drug. The in 
vitro release pattern indicating sustained release 
for 48 h [36]. In 2011, Shubhini prepared INH 
niosomes which remained in the targeted site for 
longer time and also maintained INH 
concentration up to 30 h. The INH niosomes 
developed were capable of reducing drug dose 
and toxicity as well as dosing frequency which 
improved patient compliance [37]. In another 
study, Jain and Vyas developed micro-sized (8-
15 μm) RIF loaded niosomes. It was revealed 
from in vivo studies that, depending upon the 
size of niosomes, up to 65 % of the drug loaded 
niosomes found in the lungs. The RIF niosomes 
had lower toxicity and were efficiently up taken 
into the lungs [38].  
 
Furthermore, in 2010, Pavalarani studied 
niosomes of RIF and gatifloxacin. The 
bactericidal activities of the niosomal formulation 
were particularly examined using the resistant 
strains (RF 8554) and sensitive strains (H37Rv) 
of MTB. The results showed that these niosomes 
had greater inhibition and reduced growth index 
[39]. El-Ridy et al studied PYZ niosomes with 
maximum concentration in lungs, less side 
effects and decreased toxicity [40].  

NEW ANTI-TUBERCULOSIS DRUG 
CANDIDATES IN CLINICAL TRIALS 
 
For the definite abolishment of TB; outdated 
drugs and regimens would offer no help. Instead 
there is a pressing need to make progress or 
development for new drugs but there are also 
some definite and comprehensible criteria for 
developing new TB drug candidates [41]. In 
addition to a fully confirmed safety profile, 
numerous other necessary factors should be 
fulfilled by a new anti-TB drug, that are: it should 
be more potent than existing drugs in order to 
reduce the duration of therapy; should inhibit new 
targets so that MDR-TB and XDR TB can be 
treated; be compatible with antiretroviral drugs; 
and show no antagonism to other TB drugs. 
Combining these new drugs with existing TB 
drugs revive hope for regimens that are better 
tolerated, shorter treatment duration and with 
less drug-drug interactions when compared with 
existing regimens For this purpose, various anti-
TB drugs have been synthesized and tested in 
vitro [42] showed novel mechanism of action 
(Figure 2).  
 
These agents are expected to improve the 
treatment of drug-resistant, and possibly drug-
susceptible TB used either separately or in 
combinations with standard therapy. 
 
(i) TMC207 
 
TMC207 formerly known as R207910 is the first 
anti-tubercular drug in the diarylquinoline class, 
with the MIC ranging from 0.002 to 0.06 μg/mL. 
In Phase II trials for the treatment of smear-
positive pulmonary MDR-TB, TMC-207 was 
examined at 400 mg/day for 2 weeks, followed 
by 200 mg thrice weekly. It was found effective 
and safe [43]. In guinea pigs, TMC-207 was 
given for 6 weeks resulted in nearly complete 
elimination of MTB from body [44]. In 2008, Anil 
Koul has demonstrated an increased 
susceptibility of dormant mycobacterium toward 
TMC-207 as compared with actively growing 
bacteria. TMC-207 at 10 µg/mL was highly 
potent and killed dormant bacilli, as no bacteria 
could be detected by 14th day [45]. The 
remarkable activity of the combination of TMC-
207 with PYZ in reducing the bacillary count by 
5.6 log10 CFU after 1 month of treatment that is 
higher by more than 2 log10 CFU which obtained 
with the most effective drug combination without 
TMC-207, i.e., RIF-INH-PYZ [46]. 
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Figure 2:  New anti-TB drugs with site of action 
 

(ii) Nitroimidazoles 
 
Two new nitroimidazoles including PA-824 the 
lead compound from a series of 
nitroimidazoxazine derivatives and OPC-67683 
(delamanid) the lead compound from a series of 
nitroimidazoxazole derivatives, are favourable 
drugs for TB. An early bactericidal activity study 
was performed to evaluate PA-824 orally at 200, 
600 and 1000 or 1200 mg/day for 14 days. All 
doses were well tolerated, but unpredictably, 
showed comparable activity [47]. PA-824 
exhibited significant anti-TB activity, with a MIC90 
of 0.015-0.25 μg/mL against both drug-
susceptible and resistant strains of MTB [48].  
 
TB Alliance completed the clinical trial NC001, to 
evaluate combination of three-drug regimen PA-
824, moxifloxacin and PYZ. The PYZ regimen 
presented substantially better effects than the 
standard treatment (HRZE) [49]. It is also 
markedly reassuring for MDR-TB patients who 
are susceptible to the drugs in the regimen, as it 
reduces the treatment from 2 years to 4 months 
together with being an efficiently economical and 
reasonable package costing just a fraction of the 
current MDR-TB treatment. It can be co-
administered with common antiretroviral drugs, 
thereby improving treatment opportunity for 
patients co-infected with TB and HIV. PA-824 
Studies in healthy volunteers showed a t1/2 of 
about 18 h and a time to reach Cmax of 4 to 5 h. 
About 65 % of drug is excreted in urine and 26 % 
in feces.  
 

OPC-67683 is a nitro-dihydro-imidazooxazole 
and is closely related to PA-824. It inhibits the 
synthesis of methoxy and keto-mycolic acid, with 
MIC of 0.006 - 0.024 μg/mL and plasma half-life 
of 7.6 h. OPC-67683 shows potent anti-TB 
activity against both replicating and non-
replicating bacteria and also against drug-
resistant MTB. Therapeutic efficacy of OPC-
67683 is evaluated in vivo in an experimental 
chronic TB mouse model, where OPC-67683 
exhibited the most potent anti-TB activity in 
comparison with the reference compounds. A 
new regimen containing OPC-67683 could 
incomparably curtail the treatment extent by at 
least 2 months [50]. Killing activity of OPC-67683 
was superior to INH and equal to RIF in an in 
vitro model of drug-tolerant MTB [51]. OPC-
67683 was tolerated well by healthy volunteers at 
multiple doses from 5 up to 400 mg and no 
serious adverse effects were reported [52]. 
 
(iii)  Oxazolidinones 
 
(Linezolid, AZD5847 and PNU-100480) In 
addition to mycobacteria, Oxazolidinones 
possess a broad spectrum of antibiotic activity, 
against Gram positive aerobic and anaerobic 
bacteria [53]. Linezolid has demonstrated high in 
vitro antibacterial activity against MTB as well as 
MDR and XDR strains, with a minimum inhibitory 
concentration of less than 1 μg/mL [54]. Linezolid 
has been endorsed to be used at doses of 800 - 
1200 mg/day in individual doses for the short-
term treatment of bacterial infections [55].  
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Table 3: Summary of some of the effective anti-TB drugs in clinical pipeline  
 
Drug Sponsor Active 

against 
Efficacy Comparison to standard therapy Ref 

TMC-207 Tibotec, 
and the 
Global 
Alliance 

Susceptible 
and MDR 
strains 

In MTB-infected mice TMC207 at 25 mg/kg was as 
effective as combination therapy of RIF/INH/PYZ 
whereas the addition of TMC207 to this triple drug 
regimen results in accelerated clearance of bacilli  

[63] 
 

PA-824 Global 
Alliance 

Susceptible 
and MDR 
strains 
 

 25 to 50 mg/kg of PA-824 was compared to 25 mg/kg 
of INH in mice and guinea pigs, 20 mg/kg RIF and 
100 mg/kg of MX in mice. PA-824 showed greater 
activity than INH and MX in vitro and in mice and 
comparable activity to combination therapy with RIF 
and INH  

[52] 
 

OPC-67683 Otsuka 
Pharmace
utical 

MDR In mice, a regimen of OPC-67683 (2.5 mg/kg), RIF (5 
mg/kg), and PYZ (100 mg/kg) achieved faster 
abolition of bacilli than the standard RHZE regimen 
(5, 10, 00, and 100 mg/kg). No mycobacterial colonies 
were detected after 4 months of treatment with 
OPC67683-containing regimen, Whereas colonies 
were still detected after 6months of treatment with the 
standard regimen. 

[52] 
 

PNU-
100480 

Pfizer Susceptible 
and drug 
resistant 
TB 

In a murine model, inclusion of PNU-100480 to 
current first-line TB drugs or with MX remarkably 
exaggerates the bactericidal activity. The combination 
of PNU-100480, MX, and PYZ, without RIF or INH, 
was also more progressive than standard therapy  

[64] 
 

SQ-109 Sequella Susceptible 
and drug 
resistant 
MTB isolates 

The combination of SQ109 with INH, RIF, and PZA in 
study provided a new and very effective anti-TB 
intensive phase treatment regimen that killed MTB at 
a better and faster rate than the therapeutic regimen 
of INH/RIF/EMB/PZA 

[65] 
 

 
Identical counterpart of linezolid, PNU-100480 is 
demonstrated slightly better in vitro activity. PNU-
100480 proved to be well tolerated when given at 
a dose of 1,000 mg/day in healthy volunteers 
[56]. 
 
AZD5847 is another oxazolidinone to 
counterbalance the terrible cycle of TB, it is 
bactericidal and acts like linezolid. AZD5847 has 
similar MIC to linezolid and PNU-100480. It is 
well tolerated at daily oral doses of 800, 1600 
and 2400 mg for 14 days in healthy volunteers 
with an increased Cmax of 10 µg/mL [57]. In 
another study, AZD5847 exhibited an MIC90 of 1 
μg/mL and bactericidal activity of 2 μg/mL 
against both rapid-and sluggishly growing 
organisms when tested on MTB against 
laboratory strains and clinical isolates that are 
resistant to standard regimens [58].  
 
(iv)  Ethylenediamines (SQ109) 
 
SQ109 is a 1,2-ethylenediamine ethambutol 
analogue [59] . In the mouse model, after an oral 
dose of 25 mg/kg, Cmax of SQ109 was 
approximately 0.14 μg/mL and the t1/2 of 5.2 h. 
After 28 days of treatment with 25 mg/kg of 
SQ109 or 100 mg/kg of EMB in MTB-infected 
mice, the lung CFU counts reduced by 2-log10, as 
compared to 3-log10 in control mice treated with 

25 mg/kg of INH [60]. In 2012, Venkata studied 
bactericidal activity of PNU and SQ109 against 
MTB in vitro and in macrophages. Both 
compounds have an exemplary activity alone 
and in combination with other anti-TB drugs in 
chronic TB mouse models [61]. SQ109 has 
synergistic effect with INH, and RIF and it has 
also activity against EMB resistant strains in vitro 
[62]. In 2005, Protopopova unveiled the activity 
of SQ109 against drug-resistant strains of MTB. 
SQ109 was able to lower the intracellular MTB 
count by 99 % at its MIC of 1.56 mM. SQ109 
demonstrated highest activity in vivo, mainly in 
lungs, and effective in curing TB infection in mice 
at 1 mg/kg while ethambutol at 100 mg/kg [59]. 
The list of TMC207, PA-824, OPC-67683, PNU-
100480 and SQ109 drugs used as potent drugs 
to shorten the treatment of MTB is shown in 
Table 3. 
 
CONCLUSION 
 
Regardless of all the laborious measures and 
overtures taken for making the treatment a 
conducive procedure, TB never ceases to be one 
of the phenomenal challenging threats 
encountered at global level. 
 
The management of tuberculosis with anti-TB 
drugs chemotherapy dwells to be a difficult task. 
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The cardinal reasoning for this is the 
development of resistance by microbes and 
severe uncertain blocks of conventional 
chemotherapy. Current therapeutic agents are 
life-saving for many patients, but fail to defeat 
MDR-TB/XDR-TB. The new anti-TB drugs are 
unquestionable needed to reduce the course of 
treatment, to compare against MDR- and XDR-
TB and also to be easily administered in 
combination with antiretroviral drugs. Though 
identifying novel anti-TB agents remain a priority, 
the development of new formulations such as 
nano carrier systems to deliver existing anti-TB 
agents to the affected site is one of the 
alternatives to improve TB chemotherapy. Nano 
technology has a significant potential within the 
realm of possibility for treatment of TB, as it can 
improve drug bioavailability and reduce dosing 
frequency that may create a sound basis for 
better management of the disease. To top it all 
auxiliary anti-TB drugs offer the promise of 
shortened treatment regimens for drug-sensitive 
disease and more effective treatment for drug-
resistant disease and latent infection, and also 
offer hope for future tuberculosis control. 
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