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Abstract 

Purpose: To investigate the effects of Kangshen oral liquid (KSOL) on gentamicin sulfate (GS)-induced 
acute kidney injury (AKI) in rats. 
Methods: The rats were randomly divided into seven groups and treated with normal saline (NS), GS, 
furosemide, uremic clearance granule, or one of three different doses of KSOL. Several AKI-related 
indices were monitored, including renal index (RI), urine protein (UP) level, B-N-acetyl-glucosaminidase 
(NAG) activity in the urine, serum creatinine (SCr) level, blood urea nitrogen (BUN) level in the serum, 
malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in the kidney tissue. 
Histopathological changes in the kidney tissue of each group were monitored using light microscopy. 
Results: After treatment with KSOL (20, 10, or 5 mL/kg), the RI, activity of NAG and levels of UP, SCr, 
BUN, and MDA were significantly decreased by 6.66 - 41.47 %, and the activity of SOD was 
significantly increased by 15.85 - 20.27 %, compared with the GS group (p < 0.05 or 0.01). The 
histopathological studies showed that KSOL notably improved GS-induced atrophy of the glomeruli, 
lymphocytic infiltration in the interstitium of the cortex, protein deposits in the collecting tubules, and 
hyperemia of the renal interstitium. 
Conclusion: KSOL improves GS-induced AKI at biochemical and histopathological levels, and thus has 
a potential to be developed into a therapeutic drug for AKI. 
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INTRODUCTION 
 
Acute kidney injury (AKI) is a common and 
important diagnostic and therapeutic challenge 
for clinicians [1]. It is characterized by a rapid 
decrease of renal excretory function and the 
accumulation of products of nitrogen metabolism 
such as creatinine, urea, and other waste 
products. Because the AKI definition emphasizes 

the filtration function of the kidney, it can be 
easily and routinely diagnosed by analyzing the 
serum creatinine (SCr) and urea concentrations 
[2,3]. 
 
The use of vasopressors and conditions such as 
diabetes mellitus, chronic renal disease, and 
sepsis are some triggers for AKI, while 
hypovolemia, creatinine on admission, and high 
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severity scores are clinical indicators of the 
condition [4-6]. The mortality of AKI patients is 60 
- 70 % [7,8]. About 20 - 40 % of AKI patients die 
in the hospital, and the mortality rates are even 
higher in patients who suffer from severe AKI 
[9,10]. Currently, specific therapies have not 
been developed to prevent or cure AKI. Patients 
who survive AKI often suffer from chronic kidney 
disease or end-stage renal disease [11,12]. 
Therefore, it is critical to develop new, safe and 
effective drugs to prevent or treat AKI. 
 
Based on the knowledge of the compatibility and 
characteristics of traditional Chinese medicines 
(TCMs), Kangshen oral liquid (KSOL), which 
consists of: Ginseng radix et rhizoma (150 g), 
Astragali radix (200 g), Atractylodis 
Macrocephalae rhizoma (150 g), Poria (200 g), 
Epimedii folium (150 g), Dioscoreae rhizoma 
(150 g), Pheretima (100 g), Carthami flos (200 
g), Rosae Laevigatae fructus (200 g), Euryales 
semen (100 g), and Glycyrrhizae radix et 
rhizoma (40 g), was developed by Wei-Guo Yi, 
Xiang-Nan Li and their team to help patients with 
AKI. The aim of this study was to investigate the 
effects of KSOL on gentamicin sulfate (GS)-
treated AKI in rats by observing the 
histopathological changes of kidney tissue and 
determining AKI-related indices, such as the 
renal index (RI), the urine protein (UP) level, the 
B-N-acetyl-glucosaminidase (NAG) activity in the 
urine, the serum creatinine (SCr) and blood urea 
nitrogen (BUN) levels in the serum, as well as 
the malondialdehyde (MDA) level and superoxide 
dismutase (SOD) activity in the kidney tissue.  
 
EXPERIMENTAL  
 
Plant materials 
 
Ginseng radix et rhizoma, Astragali radix, 
Atractylodis Macrocephalae rhizoma, Poria, 
Epimedii folium, Dioscoreae rhizoma, Pheretima, 
Carthami flos, Rosae Laevigatae fructus, 
Euryales semen, and Glycyrrhizae radix et 
rhizoma were purchased from Beijing 
TongRenTang Co., Ltd and identified by Wei-
Guo Yi, who work in Department of Medicine, the 
152nd Central Hospital of PLA (Pingdingshan, 
China). Eleven voucher specimens for each 
crude drug (voucher nos. 152CHPLA2009010 - 
152CHPLA2009020) were stored in Dalian 
Medical University (Liaoning, China) for future 
reference. 
 
Chemicals and reagents 
 
Uremic clearance granule (UCG) was purchased 
from Inner Mongolia Shankangchen 

Pharmaceutical Industry (batch no. 20110114). 
Furosemide was obtained from Tianjin Lisheng 
Pharmaceutical Co., Ltd (batch no. 1101008). 
Normal saline (NS) was provided by Henan 
Tailing Pharmaceutical Co., Ltd., (batch no. 
11082465). GS was manufactured by Henan 
Furen Huaiqingtang Pharmaceutical Co., Ltd., 
(batch no. 1108301). Formalin was purchased 
from Yantai Shuangshuang Chemical Co., Ltd., 
(batch no. 20110310). Acetic acid was obtained 
from Tianjin Hengxing Chemical Reagent Co., 
Ltd., (batch no. 20110114). The SCr assay kit 
(batch no. 20111223), urea assay kit (batch no. 
20111223), UP test kit (batch no. 20120109), 
NAG assay kit (batch no. 20111201B), SOD 
assay kit (batch no. 20120105), and MDA assay 
kit (batch no. 20111227) were purchased from 
Nanjing Jiancheng Bioengineering Institute, 
China. 
 
Animals 
 
Adult Wistar rats (200 ± 20 g) were obtained from 
Hebei Experimental Animal Center and housed 
in metabolic cages (25 °C, 12 h light/dark cycle). 
All animals received water and food ad libitum. 
Animal treatments were conducted in strict 
accordance with the ethical guidelines of the 
National Institutes of Health Guide for the Care 
and Use of Laboratory Animals [13]. Experiments 
were carried out with the approval of the ethics 
committee of the 152nd Central Hospital of PLA 
(protocol no. 2009092632). 
 
Preparation of KSOL 
 
KSOL was provided by the 152nd Central 
Hospital of PLA’s manufacturing laboratory 
(batch no. 20110425). KSOL was prepared as 
follows. According to the ratio described above, 
11 kinds of TCMs were finely ground and boiled 
thrice with water for 40 min. The combined 
decoction filtrate was concentrated under 
reduced pressure by rotary evaporators to reach 
a relative density of 1.15 - 1.30 at 80 °C, and 
then the concentrate was diluted with ethanol to 
obtain a 60 % ethanol solution. The resulting 
solution was incubated standing at room 
temperature for 24 h. After filtration, the ethanol 
solution was condensed under reduced pressure 
by rotary evaporators to remove the alcohol, and 
simple syrup was added into the solution. The 
above solution was diluted to 1000 mL (pH = 5.0 
- 7.0) with water, and then the diluted solution 
was filtrated and sterilized to produce KSOL. 
 
Grouping, modeling, and treating 
 
Eighty-four Wistar rats were randomly divided 
into seven groups (n = 12) to receive one of 



Zhao et al 

Trop J Pharm Res, February 2016; 15(2): 357  
 

seven treatments: NS, GS, furosemide, UCG, or 
one of the three different doses of KSOL. Rats 
treated with GS, furosemide, UCG, or KSOL 
were first injected intraperitoneally with 140 mg 
GS/kg at 9:00 a.m. once a day for 7 days to 
establish the AKI model. Meanwhile at 6 p.m. 
each day, rats in the GS, furosemide, or UCG 
groups were separately administered orally with 
NS, 6.6 mg furosemide/kg, or 4.2 g UCG/kg, and 
rats in the KSOL groups were administered orally 
with high (20 mL/kg), middle (10 mL/kg), or low 
(5 mL/kg) doses of KSOL, respectively. Rats in 
the NS group were injected intraperitoneally with 
NS at 9:00 a.m. and administered orally with NS 
at 6 p.m. once a day for 7 days. All drugs were 
dissolved in NS or diluted with NS to obtain 
different concentrations such that the rats 
received an intragastric volume of 20 mL/kg. 
 
After 1 h of drug treatment on 7th day, rats were 
transferred to metabolic cages, and the urine 
excreted by the rats was collected over 24 h and 
used to determine the NAG activity and UP level. 
Orbital blood was gathered on the 8th day and 
centrifuged at 3000 r/min for 10 min at 4 °C to 
obtain serum, which was used to determine the 
SCr and BUN levels. Subsequently, the rats were 
sacrificed by decapitation, and their kidneys were 
removed and washed with NS, blotted with a 
piece of filter paper and weighed. The right 
kidney was homogenized and centrifuged at 
3000 r/min for 10 min at 4 °C to obtain the 
supernatant, which was used to analyze the SOD 
activity and MDA level. The left kidneys were 
isolated for histopathological investigation. RI 
was calculated as in Eq 1. 
 
RI (%) = (A/B)100 ……………………………. (1) 
 
where A and B stand for the weight of the renal 
parenchyma and the body weight, respectively. 
 
Biochemical determinations 
 
The levels of UP, SCr, BUN, MDA, and the 
activities of NAG and SOD were determined 
using the corresponding kits according to the 
manufacturer’s instructions for each [14-16]. 
After reactions were completed, absorbance was 
determined for all samples using a UV-visible 
spectrophotometer (Unico Shanghai Instrument 
Co. Ltd., China) or a 680Microplate Reader (Bio-
Rad, USA).  
 
The detection wavelengths for UP, SCr, BUN, 
MDA, NAG, and SOD were set at 595, 510, 640, 
640, 450, and 560 nm, respectively. The 
absorbance for these indices was used to 

calculate the level or activity according to the 
corresponding standard curves. 
 
Histopathological studies 
 
Tissue fragments were taken from the left kidney 
tissue from representative rats in each group and 
fixed in 10 % formalin. The fixed kidney tissue 
was washed six times with PBS, dehydrated in 
ethanol, and embedded in paraffin. The 
embedded tissue fragment was sliced at 3 μm, 
and the slices were stained with hematoxylin and 
eosin (H&E) for light microscopy. 
 
Statistical analysis 
 
All data are presented as mean ± standard 
deviation (SD) and were analyzed by one-way 
ANOVA using SPSS 19.0 (IBM SPSS Statistics, 
USA). Differences were considered to be 
statistically significant at p < 0.05. 
 
RESULTS 
 
KSOL decreased RI and UP level in rats with 
GS-induced AKI 
 
As shown in Table 1, the RI and UP level in the 
GS group were increased significantly, compared 
with the NS group (p < 0.01), indicating that the 
AKI model was successfully established with GS 
treatment. Furthermore, these increases were 
reversed by treatment with furosemide or UCG, 
suggesting that the injuries could be reversed 
successfully with known treatments. After 
treatment with KSOL (20, 10, or 5 mL/kg), the RI 
and UP level were decreased significantly 
relative to the GS group (p < 0.01), suggesting 
that the KSOL offered an improvement to AKI 
injury in this model. 
 
KSOL down-regulated SCr and BUN levels in 
rats with GS-induced AKI 
 
As shown in Table 2, the SCr and BUN levels in 
the GS group were increased significantly, 
compared with the NS group (p < 0.01), 
indicating that the AKI model had been 
successfully established. After treatment with 
UCG or KSOL (20, 10, or 5 mL/kg), the SCr level 
was decreased significantly, compared with the 
GS group (p < 0.01). After treatment with UCG or 
KSOL (10 or 5 mL/kg), the BUN level was 
decreased significantly relative to the GS group 
(p < 0.05 or 0.01). 
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Table 1: KSOL decreased RI and UP level in rats with GS-induced AKI 
 
Group Dose/kg RI UP (mg/L) 
NS - 0.799±0.040** 616.300±144.000** 
GS - 1.200±0.030 1702.800±140.300 
Furosemide 6.6 mg 1.100±0.098** 1373.600±241.100** 
UCG 4.2 g 1.030±0.081** 1373.000±188.900** 
High KSOL 20 mL 1.079±0.089** 1533.000±175.800** 
Middle KSOL 10 mL 1.028±0.085** 1589.400±129.600** 
Low KSOL 5 mL 1.029±0.068** 1513.600±175.100** 
All data stood for mean ± standard deviation; **p < 0.01, compared with the GS group 
 
Table 2: KSOL down-regulated SCr and BUN levels in rats with GS-induced AKI 
 
Group Dose/kg SCr (μmol/L) BUN (mmol/L) 
NS - 24.411±5.678** 9.463±2.324** 
GS - 79.383±16.854 32.200±6.822 
Furosemide 6.6 mg 68.238±18.134 28.515±7.953 
UCG 4.2 g 57.533±11.994** 24.235±4.208** 
High KSOL 20 mL 59.684±13.816** 24.663±10.488 
Middle KSOL 10 mL 53.016±9.612** 24.417±6.951* 
Low KSOL 5 mL 55.382±13.140** 21.339±4.092** 
All data stood for mean ± standard deviation; *p < 0.05, **p < 0.01, compared with the GS group 
 
Effect of KSOL on MDA level, NAG activity 
and SOD activity in rats with GS-induced AKI 
 
As depicted in Table 3, MDA level and NAG 
activity in GS group were increased significantly, 
and the SOD activity was reduced significantly, 
compared with the NS group (p < 0.01). These 
data indicated that the AKI model was 
successfully established. After treatment with 
furosemide, UCG, or KSOL (20, 10, or 5 mL/kg), 
the MDA level and NAG activity were reduced 
significantly, compared with the GS group (p < 
0.05 or 0.01). After treatment with UCG or KSOL 
(20, 10, or 5 mL/kg), the SOD activity was 
increased significantly, compared with the GS 
group (p < 0.05 or 0.01). 
 
Effect of KSOL on histopathological 
characteristics of kidney tissue of rats with 
GS-induced AKI 
 
In the NS group, glomeruli, renal tubules, and 
collecting tubules were normal (Figure 1A and 

B). In the GS group, the glomeruli were 
atrophied, and the epithelial cells of the tubules 
had extreme edema, which resulted in stenosis 
of the lumens. There was severe lymphocytic 
infiltration in the interstitium of the cortex. 
Significant protein deposits were observed in the 
collecting tubules, and the renal interstitium was 
hyperemic (Figure 1C and D).  
 
In the furosemide groups, the glomeruli were 
normal, but the epithelial cells of tubules 
exhibited edema. Protein deposits were 
observed in the renal tubules and severe 
lymphocytic infiltration was observed in the 
interstitium of the cortex. Protein deposits had 
accumulated in the collecting tubules, and the 
renal interstitium was hyperemic (Figure 1E and 
F). In the UCG group, the histological sections 
were similar to those in the furosemide group, 
except that the renal interstitium exhibited 
extreme hyperemia (Figure 1G and H). 

 
Table 3: Effect of KSOL on NAG, MDA and SOD in rats with GS-induced AKI 
 

Group Dosage/ kg NAG (U/L) MDA  
(nmol/mg prot) 

SOD 
 (U/mg prot) 

NS - 3.626±0.720** 0.785±0.116** 239.000±63.1** 
GS - 7.257±0.886 1.384±0.392 162.800±19.000 
Furosemide 6.6 mg 6.134±1.452* 0.963±0.356* 186.900±38.900 
UCG 4.2 g 4.167±0.846** 0.814±0.199** 209.100±43.300** 
High KSOL 20 mL 5.881±0.698** 0.972±0.387* 195.800±25.900** 
Middle KSOL 10 mL 5.811±1.084** 0.810±0.178** 191.000±32.900* 
Low KSOL 5 mL 6.015±1.374* 0.901±0.298** 188.600±34.600* 
All data stood for mean ± standard deviation; *p < 0.05, **p < 0.01, compared with the GS group 
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Figure 1: Effects of KSOL on histopathological appearance in the kidney tissues of rats with GS-induced AKI; A 
and B: Kidney tissues from the NS group; C and D: Kidney tissues from the GS group; E and F: Kidney tissues 
from the furosemide group; G and H: Kidney tissues from the UCG group; I and J: Kidney tissues from the high 
dose of KSOL group; K and L: Kidney tissues from the middle dose of KSOL group, M and N: Kidney tissues 
from the low dose of KSOL group; (haematoxylin & eosin staining, magnification × 400) 
 
In the high-dose KSOL group, the histological 
sections were similar to those from the 
furosemide group (Figure 1I and J). In the middle 
dose of KSOL group, the histological sections 
were similar to those from the furosemide group, 
except that there were some protein deposits in 
the renal tubules and slight lymphocytic 
infiltration in the interstitium of the cortex (Figure 
1K and L). In the low dose of KSOL group, the 
histopathological characteristics were similar to 
those observed in the UCG group (Figure 1M 
and N). 
 

DISCUSSION 
 
Administration of GS is considered an acceptable 
model to induce AKI in rats. Upon GS 
administration, several physiological markers are 
used to measure the severity of AKI, including RI 
and UP levels, NAG activity in urine, serum SCr 
BUN levels, and renal MDA level; all of these 
increased under conditions of AKI. Additionally, 
SOD activity is decreased in rat kidney with AKI 
[17-19]. We observed all of these physiological 
changes in our AKI model. Moreover, many 
histopathological characteristics, including 
atrophy of the glomeruli, lymphocytic infiltration in 
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the interstitium of the cortex, protein deposits in 
the collecting tubules, and hyperemia of the renal 
interstitium, can be observed in rat kidney with 
GS-induced AKI [17-19].  
 
In the present study, we investigated the effect of 
KSOL on GS-induced AKI in rats by measuring 
these various AKI-related indices and 
histopathological changes. We confirmed that 
GS can induce all of these changes in this rat 
model of AKI. Furosemide and UCG each offer a 
protective effect on the kidney, and thus served 
as positive control treatments [20,21]. 
 
Several physiological indices can be used to 
evaluate the overall health of the kidney. RI is a 
simple index to reflect edema of the kidney, and 
an increase in RI indicates that edema of the 
kidney has occurred [22]. UP can reflect filtration 
function of the kidney, where kidney damage is 
reflected by an increase in UP level [19]. 
Although glomerular filtration rate (GFR) is the 
best overall index of renal function in health and 
disease [23], it is difficult to measure in clinical 
practice. Therefore, most clinicians estimate the 
GFR based on the SCr level [24]. Renal 
parenchymal injury can lead to an increase in 
BUN level [19].  
 
NAG, a lysosomal enzyme whose molecular 
weight does not permit filtration through 
glomeruli, exists in the proximal tubular cells. An 
increase in NAG activity in the urine indicates 
that kidney dysfunction has occurred [25]. MDA 
level can assess lipid peroxidation, which can 
induce tissue damage through oxygen-free 
radicals [26]. An increase in MDA level in kidney 
tissue indicates that lipid peroxidation has 
occurred. SOD is an essential defense against 
the damage of superoxide [27].  
 
The mechanism of GS-induced nephrotoxicity 
seems to be a result of destructive reactive 
oxygen species, which can participate in kidney 
injury [19]. Thus, increase in SOD activity can 
accelerate recovery from AKI. In this study, 
KSOL exhibited a protective effect on GS-
induced AKI in rats at the biochemical level by 
increasing the activity of SOD and reducing the 
RI, activity of NAG, and levels of UP, SCr, BUN 
and MDA.  
 
Moreover, our results show that KSOL improved 
GS-induced histopathological characteristics in 
the kidney tissue of rats with AKI, including 
atrophy of the glomeruli, lymphocytic infiltration in 
the interstitium of the cortex, protein deposits in 
the collecting tubules, and hyperemia of the renal 
interstitium. 
 

CONCLUSION 
 
KSOL has a protective effect on GS-induced AKI 
in rats by increasing the activity of SOD and 
decreasing RI, NAG activity, as well as levels of 
UP, SCr, BUN and MDA. KSOL also improves 
the histopathological profile of kidneys. Thus, 
KSOL is capable of preventing the toxic effects of 
GS on kidneys at biochemical and 
histopathological levels, and thus has a potential 
to be developed into a therapeutic treatment for 
AKI. 
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