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Abstract 

Purpose: To design and develop a new series of histone deacetylase inhibitors (FP1 - FP12) and 
evaluate their inhibitory activity against hydroxyacetamide (HDAC) enzyme mixture-derived HeLa 
cervical carcinoma cell and MCF-7.  
Methods: The designed molecules (FP1 - FP12) were docked using AUTODOCK 1.4.6. FP3 and FP8 
showed higher interaction comparable to the prototypical HDACI. The designed series of 2-[[(3-
Phenyl/substituted Phenyl-[4-{(4-(substituted phenyl)ethylidine-2-Phenyl-1,3-Imidazol-5-One}](-4H-
1,2,4-triazol-5-yl)sulfanyl]-N-hydroxyacetamide derivatives (FP1-FP12) was synthesized by merging 2-
[(4-amino-3-phenyl-4H- 1, 2, 4-triazol-5-yl) sulfanyl]-N-hydroxyacetamide and 2-{[4-amino-3-(2-
hydroxyphenyl)-4H-1,2, 4-triazol-5-yl]sulfanyl}-N hydroxyacetamide derivatives with aromatic substituted 
oxazolone. The biological activity of the synthesized molecule (FP1-FP12) was evaluated against HDAC 
enzyme mixture-derived HeLa cervical carcinoma cell and breast cancer cell line (MCF-7). 
Results: HDAC inhibitory activity of FP10 showed higher IC50 (half-maximal concentration inhibitory 
activity) of 0.09 μM, whereas standard SAHA molecule showed IC50 of 0.057 μM. On the other hand, 
FP9 exhibited higher GI50 (50 % of maximal concentration that inhibited cell proliferation) of 22.8 μM 
against MCF-7 cell line, compared with the standard, adriamycin, with GI50 of (-) 50.2 μM. 
Conclusion: Synthesis, spectral characterization, and evaluation of HDAC inhibition activity and in vitro 
anticancer evaluation of novel hydroxyacetamide derivatives against MCF-7 cell line have been 
achieved. The findings indicate the emergence of potentialanticancer compounds. 
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INTRODUCTION 
 
Histone deacetylase (HDAC) enzyme is one of 
the leading targets in the process of anticancer 
drug development. HDAC was divided into three 
distinct structural classes as class (I/II) zinc- 
dependent and class (111) NAD dependent [1]. 
These enzymes are a part of multiprotein 

complexes, catalyzing the removal of acetyl 
group from lysine residue on protein including 
histone. Suberoyl anilide hydroxamic acid was 
the primary important histone deacetylase 
inhibitor (HDACI) (Figure 1). 
 
Suberoyl anilide hydroxamic acid has three basic 
parts as surface recognition, linker and metal 
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binding portions. HDAC inhibitors have shown to 
bind the active site and block the substrate 
access, causing a resultant accumulation of 
acetylated histones [2].  HDACIs inhibit tumor 
growth, cell differentiation and programmed cell 
death. HDACIs induce cancer cell cycle arrest, 
growth inhibition, differentiation, and 
programmed cell death [3]. HDACI induced cell 
cycle arrest and growth inhibition is usually 
correlated with transcriptional activation of 
p21WAF1/CIP1, p27KIP1, GADD45a [4] and 
inhibition of cyclin A, cyclin D and thymidylate 
synthetase [5]. The most important HDACI are 
the hydroxamic acids group followed by the 
benzamides, the cyclic tetra peptides, the 
carboxylic acids and the electrophilic ketones [6]. 
These observations prompted us to modify the 
linker portion to an imidazolo triazolated moiety 
and enacting the metal binding hydroxamic acid 
portion and molecular docking against 1T69, 
synthesize and check their in vitro HDAC 
inhibition, antiproliferative efficacy against MCF-7 
cell line. 
 

 
Figure 1: Structure of basic pharmacophore of SAHA 
and synthesized HDAC inhibitor 
 
EXPERIMENTAL  
 
Molecular docking protocol and binding 
analysis 
 
All computational studies were carried out using 
AUTODOCK 4.0.1. The geometry of HDAC-8 
was extracted from the Brookhaven protein data 
bank (PDB entry code: 1T69) complexes with the 
irreversible inhibitor SAHA (Suberoyl Anilde 
Hydroxamic acid). All the residues within 20 Å 
core from SAHA were used to define the metal 
binding site. For the docking, a grid spacing of 
0.375 Å and 126 × 90 × 90 number of points was 
used. The grid was centered on the mass center 
of the experimental bound SAHA coordinates. 
Autodock generated 10 possible binding 
conformations. A default protocol was applied, 
with an initial population of 150 randomly placed 
individuals, a maximum number of 2.5 x 105 
energy evaluations, and a maximum number of 
2.7 x 104 generations. A mutation rate of 0.02 

and a crossover rate of 0.8 were used [7-10]. 
Cluster analysis of the docking results using root 
mean square deviation (RMSD) tolerance of 2 Ǻ. 
 
Materials and equipment 
 
Melting points were checked using open capillary 
method Veego Electronics Apparatus. The IR 
spectra for comparison of synthesized 
compounds were recorded on a Perkin Elmer 
(serial no: 78625) FTIR spectrophotometer. 
1HNMR spectra were recorded on Bruker Avance 
DRX300 300MHz FTNMR spectrometer using 
DMSO-d6 as solvent. The chemical shifts were 
measured at δ units (reported as ppm) relative to 
TMS and signals are reported as s (singlet), d 
(doublet), t (triplet), q (quartet, m (multiple). Mass 
spectra were also recorded. All 1HNMR and 
Mass spectra was done by IICB, Kolkata and 
CDRI, Luck now. UV spectroscopy was done by 
the help of Shimadzu UV-1700 Spectroscopy. 
Elemental analysis was performed using a micro-
analytical unit. All chemicals were procured from 
sigma Aldrich and Merck. All the reactions were 
routinely checked by precoated Merck thin layer 
chromatographic plate using toluene:methanol 
(9:1) as solvent system.  
 
Chemistry 
 
Synthesis of 2-chloro-N-hydroxyacetamide 
(III) 
 
Methanol (12 mL) and 0.0336 M, 2.34 g of 
hydroxylamine hydrochloride were placed over a 
heated magnetic plate in a flask. The mixture 
was stirred for 5 min and added drop wise to a 
previously prepared methanol solution of 0.0501 
M, 2.81 g potassium hydroxide. Then the 
resulting solution was cooled to room 
temperature and filtered. The filtrate was stored 
and used for the next step.  
 
Then 25 ml of methanol was taken in a 250 ml 
beaker and stir over magnetic stirrer. Total 
synthetic setup was done under fuming 
cupboard. Pour 0.07 M, 5.6 ml of chloroacetyl 
chloride from dropping funnel onto the methanol 
and mixed it properly. Then hydroxylamine stock 
solution was added dropwise to the choloroacetyl 
chloride and stir for 2 h. The product was 
obtained by filtration. Filtrate was washed with 
diethyl ether and recrystallized from methanol.   
 
Physical Nature: White Colored powder solid. 
Yield: 33.25 % M.p = 138 ˚C. Total synthetic 
procedure was report in Scheme 1. 
 
General procedure for the preparation of 2-
[(4-amino-3-phenyl/3-(2-hydroxy phenyl)-4H- 
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1, 2, 4-Triazol-5-yl) sulfanyl]-N-hydroxyaceta-
mide (IX and XV) 
 
4-amino-3-phenyl-4H-1, 2, 4-triazole-5-thiol (VIII) 
was synthesized from benzoic acid and 2-(4-
amino-5-sulfanyl-4H-1, 2, 4-triazol-3-yl) phenol 
(XIV) from salicylic acid by adopting Reid Hindel 
Process. Both 4-amino-3-phenyl-4H-1, 2, 4-

triazole-5-thiol (VIII) and 2-(4-amino-5-sulfanyl-
4H-1, 2, 4-triazol-3-yl) phenol (XIV) were stirred 
with 2-chloro-N-hydroxyacetamide (III) in 
dimethyl formamide (DMF) solution for 1h 
respectively to achieve compound IX and XV. 
The general procedure for the synthesis of IX 
and XV was reported in Scheme 2 and 3. 
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Scheme 1: (a) Stir 2 h (33.25 %) 
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Scheme 2: (a) Conc H2SO4,EtOH, 80˚C, 4 h ( 47.05%): (b) NH2NH2.H2O, EtOH, 120˚C, 6 h (31.01%): (c) 
CS2,KOH, EtOH, Stir 15 h (44.42%): (d) NH2NH2.H2O, 130˚C, 6 h (94.64%): (f) DMF, Stir, 1H (45.20%) 
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Scheme 3: (a) Concentrated H2SO4,EtOH, 80˚C, 4 h ( 49.25%): (b) NH2NH2.H2O, EtOH, 120˚C, 6 h (28.35%): (c) 
CS2,KOH, EtOH, Stir 15 h (47.52%): (d) NH2NH2.H2O, 130˚C, 6 h (82.32%):  (e) DMF, Stir, 1H (41.20%) 
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General procedure for the preparation of (4E)-
4-[(2-) methylidene]-2-phenyl-1,3-oxazol-
5(4H)-one (XVIIIa-f) 
 
An amount of 0.022 M substituted aromatic 
aldehyde (benzaldehyde, salicylaldehyde, 4-
methoxy benzaldehyde, anisaldehyde, 
furfuraldehyde, cinnamaldehyde), 1.8 g of 0.022 
M sodium acetate and 4.0 g of 0.022 M hippuric 
acid were suspended in 0.066 M glacial acetic 
acid solution. The mixture was refluxed for 2 h 
under water bath.  
 
After cooling the mixture, add 10 mL of ethanol 
into the solution and kept for overnight at below 5 
oC. The obtained precipitation was filtered and 
washed the filter cake with ethanol followed by 
drying under vacuum. Synthesis was performed 
as per Scheme 4 and result reported in Table 2. 
 
 

General procedure for the preparation of 2-
[[(3- substituted phenyl-[4-{(4-(substituted 
phenyl) ethylidine-2-Phenyl-1,3-Imidazol-5-
One}](-4H-1,2,4-triazol-5-yl)sulfanyl]-N-
hydroxyacetamide (FP1 - 12) 
 
Equimolar concentration (0.01 M) of (4E)-4-
[(substituted phenyl/methyl) methylidene]-2-
phenyl-1,3-oxazol-5(4H)-one and 0.01M of 2-[(4-
amino-3-phenyl-4H- 1, 2, 4-triazol-5-yl) sulfanyl]-
N-hydroxyacetamide/2-{[4-amino-3-(2-hydroxy 
phenyl)-4H-1, 2, 4-triazol-5-yl]sulfanyl}-N-
hydroxyacetamide was added to a 250 mL RBF 
and refluxed for 5 h at 150 oC under oil bath 
using 0.01 M pyridine and 0.01 M Zeolite (Y-H) 
as catalyst. After completion of the reaction, the 
excess of pyridine was distilled off. The resultant 
solution was cooled and poured into crushed ice 
and hydrochloric acid mixture. The obtained 
product was filtered and recrystallized from 
ethanol. Total synthetic procedure from FP1-12 
was reported in Schemes 5 and 6. 
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Scheme 4: (g) CH3COONa, CH3COOH, 2 h (XVIIIa. 52.12 %, XVIIIb. 55.13 %, XVIIIc. 69.13 %, XVIIId. 63.18 %, 
XVIIIe. 48.19 %, XVIIIf. 64.85 %) 
 
Table 2:  Reaction parameters for compounds XVIII (a-f) 
 
Compound Yield (%) Melting 

point (oC) 
FTIR data ((KBr) v/cm-1 

XVIIIa 52.12          160 1603.10 (ArC=Cstr), 3010 (=C-Hstr), 1680.55 (C=Ostr), 
1303.01 (C=Nstr), 997 (C-Hdefalkene), 1270 (ether 
linkagestr) 
 

XVIIIb          55.13               170 1680.55 (C=Ostr),1303.07 (C=Nstr), 1603.14 (Aromatic 
C=Cstr), 2975.93 (=C-Hstr) 
1000.47(C-Hdefalkene), 1270 (ether linkagestr) 
3370.43 (O-H str).                                                                  
 

XVIIIc         69.13                180 1680.26 (C=O str),1303.33 (C=Nstr), 1603.26 (Aromatic 
C=C str), 2975.96 (=C-H str), 1000.53 (C-H def alkene), 
1252.09 (ether linkage str) 
 

XVIIId          63.18                120 1680.17 (C=Ostr), 1303.08 (C=Nstr), 1603.04 (Aromatic 
C=Cstr), 2974.06 (=C-Hstr),                                           
1000.35(C-Hdef alkene), 1250.10 (ether linkage str) 
3371.01 (O-H str) 

XVIIIe         48.19            200 1680.01 (C=O str), 1302.94 (C=Nstr), 1603.04 (Aromatic 
C=C str), 2974.16 (=C-H str), 1000.57 (C-H def 
alkene),1249.83 (ether linkage str) 
 

XVIIIf         64.85                170 1680.89 (C=O str), 1302.43 (C=Nstr),1603.19 (Aromatic 
C=C str), 2975.84 (=C-H str), 1000.38 (C-H def substituted 
alkene), 1252.33 (ether linkage str).                                                                          
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Scheme 5: (a) Pyridine, 120˚C, 7 h (FP1. 30.42%, FP2. 28.55%, FP3. 43.84%, FP4. 35.21%, FP5. 23.21%, FP6. 
25.16%) 
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Scheme 6: (h) Pyridine, 120˚C, 7 h (FP7. 33.12%, FP8. 27.65%, FP9. 33.64%, FP10. 31.51%, FP11. 28.18%, 
FP12. 45.23%) 
 
In vitro HDAC inhibition assay 
 
In vitro fluorescent histone deacetylase assay: 
HDAC inhibition assays were performed using 
the HDAC fluorescent activity assay kit. HeLa 
cell nuclear extract which contains a number of 
HDAC isozymes and other nuclear factors, was 
used as the source of HDAC activity. The final 
substrate concentration in the assay mixture was 
50 µM. The reaction was allowed to proceed for 
10 min at room temperature before a stop 
solution was added. Test compounds were 
prepared as 20 mM stock solutions in DMSO and 
stored at -70 oC. DMSO had no significant effect 
on the activity of this assay at concentrations up 
to 5 % with the final DMSO concentration in the 
assays of not more than 2 %. Assays were 
performed in white polystyrene 96-well half-area 
assay plates and measured on a Wallac 1420 

fluorescent plate reader with an excitation 
wavelength of 355 nm, an emission wavelength 
of 460 nm, and a one sec signal averaging time 
[13]. 
 
Evaluation of antiproliferative activity on 
human breast cancer cell line (MCF-7) 
 
Antiproliferative activity of FP1-FP12 was 
evaluated using Sulphorodamine B (SRB) assay 
method on MCF-7 cell line [14]. Cultures fixed 
with trichloroacetic acid were stained for 30 min 
with 0.4 % (w/v) sulforhodamine B (SRB) 
dissolved in 1 % acetic acid. Unbound dye was 
removed by four washes with 1 % acetic acid, 
and protein-bound dye was extracted with 10 mM 
unbuffered Tris base [tris hydroxymethyl) 
aminomethane] for determination of optical 
density in a computer-interfaced, 96-well micro 
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titer plate reader. SRB assay results were linear 
with the number of cells and with values for 
cellular protein measured by both Lowry and 
Bradford assays at densities ranging from sparse 
sub-confluence to multilayered supraconfluence. 
The signal-to-noise ratio at 564 nm was 
approximately 1.5 with 1,000 cells per well.  
 
The sensitivity of SRB assay compared favorably 
with sensitivities of several fluorescence assays 
and was superior to those of both Lowry and 
Bradford assays and to those of 20 other visible 
dyes. SRB assay provides a colorimetric end 
point that is nondestructive, indefinitely stable, 
and visible to the naked eye. It provides a 
sensitive measure of drug-induced cytotoxicity, is 
useful in quantitating clonogenicity, and is well 
suited to high-volume, automated drug 
screening. SRB fluoresces strongly with laser 
excitation at 488 nm and can be measured 
quantitatively at the single-cell level by static 
fluorescence cytometry.  
 
Statistical analysis 
 
All the data were subjected to one-way ANOVA 
followed by Dunnett’s test. Statistical analysis 
was carried out using GraphPad Prism software 
5.0. Statistically significant difference was set at 
p < 0.05. 
 
RESULTS 
 
Molecular docking  
 
Energy minimized conformer with best Dock 
scores was considered for the identification of 
interacting amino acid residues with ligands. All 
the binding interactions were tabulated and 
diagrammatized in the (Table 1). 
 
Table 1: Free energies of binding (∆G) of samples 
FP1 - FP12 with the standard SAHA molecule 
 
Compound 
code 

Free energy of 
binding 

(kcal/mol) 
FP1 -7.59 
FP2 -7.82 
FP3 -8.64 
FP4 -7.62 
FP5 -7.65 
FP6 -7.65 
FP7 -7.64 
FP8 -8.86 
FP9 -7.13 
FP10 -7.65 
FP11 -7.63 
FP12 -7.78 
SAHA -7.48 
 

 

 
Figure 2: Molecular docking interaction of compounds 
FP3 and FP8 with the pdb: 1T69. Green dots 
represent hydrogen bond 
 
Synthesized compounds 
 
Twelve new hydroxyacetamide derivatives (FP1 -
FP12) were prepared by the condensation of 
different oxazolone (XVIIIa-f) and appropriately 
substituted triazolated hydroxyacetamide (IX and 
XV) using reported method as per Schemes 5 
and 6 [11,12]. The compounds were re-
crystallized using ethanol. All the compounds 
were characterized by detailed spectroscopic (IR, 
1H NMR, Mass) analyses. 
 
FP1: Yield= 30.42%, M. p= 200˚C. FT-IR (KBr) v/ 
cm-1 769.60 (mono substituted aromatic ring def), 
1610.67 (C=O str), 1351.88 (–OH def), 1501.17 (–
NH def), 1558.15 (C=N str), 2951.81(C=S str), 
1306.38 (N-N=C str) 1573.58 (nitrogen containing 
heterocyclic ring in combination of C=C). 1H 
NMR DMSO (300 MHz) δ ppm:  7.31-8.16 (m, 
15H, Ar-H), 7.86 (s, 1H, NH), 3.33 (1H aliphatic 
CH2), δ 2.50 (1Hwas observed for hydroxamic 
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OH proton). C26H20N6O3S: calculated C: 
62.90%, H: 4.03%, N: 16.9%. C26H20N6O3S: 
found: C: 61.30%, H: 4.02%, N: 16.5%. (M+1) 
496.12 (EIMS). 
 
FP2: Yield= 28.55%, M. p= 210˚C. FT-IR (KBr) v/ 
cm-1 769.70 (mono substituted aromatic ring def), 
1610.51 (C=O str), 1351.64 C=N str as well as –
OH def), 1500.50 (–NH def), 2952.52 (C=S str), 
1306.06 (N-N=C str) 1573.21(nitrogen containing 
heterocyclic ring in combination of C=Cstr), 
1558.03 (C=N str). 1H NMR DMSO (300 MHz) δ 
ppm: δ 7.87 (s, 1H, N-H), δ 7.61 (m, Ar-H), δ 
3.32 (1 H aliphatic CH2), δ 2.50 (s, 1H, OH). 
C26H20N6O4S: calculated C: 60.90%, H: 3.92%, 
N: 16.47%. C26H20N6O4S: found: C: 60.14%, H: 
3.89%, N: 16.4%. (M+1) 510.32 (EIMS). 
 
FP3: Yield= 43.84%, M. p= 158˚C. FT-IR (KBr) v/ 
cm-1 843.26 (para substituted aromatic ring def), 
1610.42 (C=O str), 1351.56 (C=N str), 1501.43 (–
NH def), 2928.51 (C=S str), 1295.23 (N-N=C str), 
1558.03 (C=N str), 1265.28 (Ar-OCH3), 3102 (NH 
str), 3280.51 (OHstr). 1H NMR DMSO (300 MHz) δ 
ppm: δ 7.87 (s, 1H, N-H), δ 7.61 (m, 14H, Ar-H), 
δ 3.38 (d, 2H aliphatic CH2), δ 2.50 (s, 1H, OH), 
3.93 (t, 3H, OCH3 at 4th position of aromatic ring). 
C27H22N6O4S: calculated C: 61.53%, H: 4.18%, 
N: 15.96%. C27H22N6O4S: found C: 60.50%, H: 
4.10%, N: 15.50%. (M+1) 526.32 (EIMS) and 
179.0266 the main fragmented portion. 
 
FP4: Yield= 35.21%, M. p=155˚C. FT-IR (KBr) v/ 
cm-1 802.00 (para substituted aromatic ring def), 
1609.38 (C=O str), 1351.56 (C=N str), 1501.43 (–
NH def), 2927.45(C=S str), 1308.14 (N-N=C str), 
1573.91(nitrogen containing heterocyclic ring in 
combination of C=C), 1558.03 (C=N str), 1266 
(Ar-OCH3). 1H NMR DMSO (300 MHz) δ ppm: δ 
7.86 (s, 1H, N-H), δ 7.45 (m, 14H, Ar-H), δ 3.38 
(d, 2H aliphatic CH2), δ 2.50 (s, 1H, OH), 3.91 (t, 
3H, OCH3 at the C-3 position of aromatic ring), 
8.82 (s, 1H, Phenolic OH). C27H22N6O5S: 
calculated C: 59.71%, H: 3.93%, N: 15.02%. 
C27H22N6O5S: found C: 59.574%, H: 3.85%, N: 
14.88%. (M+1) 559.0299 (EIMS) and the main 
fragmented portion is 179.0266. 
 
FP5: Yield= 23.21%, M. p=205˚C. FT-IR (KBr) v/ 
cm-1 790.37 (mono substituted aromatic ring def), 
1601.61 (C=O str), 1340.57 (C=N str), 1308.12 
(N-N=C str), 1266.29 (etheric linkage).  1H NMR 
DMSO (300 MHz) δ ppm: δ 7.85 (s, 1H, N-H), δ 
7.57 (m, 10H, Ar-H), δ 3.35 (d, 2H aliphatic CH2), 
δ 2.50 (s, 1H, OH), 7.64 (s, 1H, furan H). 
C24H18N6O4S: calculated C: 59.19%, H: 3.70%, 
N: 17.28%. C24H18N6O4S: found C: 58.35%, H: 
3.63%, N: 16.96%. (M+1) 486.02 (EIMS) and 
179.0268. 
 

FP6: Yield= 25.96%, M.p=188˚C. FT-IR (KBr) v/ 
cm-1 790.374 (mono substituted aromatic ring 
def), 1609.98 (C=O str), 1351.19 (C=N str), 
1307.49 (N-N=C str), 1266.29 (etheric linkage). 1H 
NMR DMSO (300 MHz) δ ppm: δ 7.86 (s, 1H, N-
H), δ 7.57 (m, 10H, Ar-H), δ 3.32 (d, 2H aliphatic 
CH2), δ 2.50 (s, 1H, OH), 3.44 (s, 1H, CH3). 
C21H18N6O3S: calculated C: 58.00%, H: 4.15%, 
N: 19.39%. C21H18N6O3S: found C: 57.613%, H: 
4.02%, N: 18.95%. (M+1) 433.2019 (EIMS). 
 
FP7: Yield= 33.12%, M.p= 190˚C. FT-IR (KBr) v/ 
cm-1 749.59 (mono substituted aromatic ring def), 
1592.68 (C=O str), 1384.68 C=N str as well as –
OH def), 1487.21 (–NH def), 2932.62 (C=S str), 
1291.72 (N-N=C str). 1H NMR DMSO (300 MHz) 
δ ppm: δ 7.84 (s, 1H, N-H), δ 7.23 (m, Ar-H), δ 
3.91 (1 H aliphatic CH2), δ 2.72 (d, 1H, Ar-OH) δ 
2.50 (s, 1H, OH), C26H20N6O4S: calculated C: 
60.94%, H: 3.91%, N: 16.40%. C26H20N6O4S: 
found C: 60.13%, H: 3.85%, N: 15.85%. (M+1) 
512.58 (EIMS). 
 
FP8: Yield= 27.65%, M. p= 205˚C. FT-IR (KBr) v/ 
cm-1 750.87 (mono substituted aromatic ring def), 
1592.37 (C=O str), 1384.68 (C=N str as well as –
OH def), 1487.40 (–NH def), 2932.21 (C=S str), 
1291.85 (N-N=C str). 1H NMR DMSO (300 MHz) 
δ ppm: δ 7.81 (s, 1H, N-H), δ 7.29 (m, Ar-H), δ 
3.91 (1 H aliphatic CH2), δ 2.50 (d, 1H, Ar-OH) δ 
2.50 (s, 1H, OH). C26H20N6O5S: calculated C: 
59.21%, H: 3.78%, N: 15.90%. C26H20N6O5S: 
found C: 60.143%, H: 3.65%, N: 15.58%. (M+1) 
528.52 (EIMS). 
 
FP9: Yield= 33.64%, M. p= 185˚C. FT-IR (KBr) v/ 
cm-1 763.44 (mono substituted aromatic ring def), 
1593.84 (C=O str), 1384.65 (C=N str as well as –
OH def), 1512.01 (–NH def), 2933.89 (C=S str), 
1321.24 (N-N=C str). 1H NMR DMSO (300 MHz) 
δ ppm: δ 7.79 (s, 1H, N-H), δ 7.39 (m, Ar-H), δ 
3.81 (1 H aliphatic CH2), δ 2.66 (d, 1H, Ar-OH) δ 
2.50 (s, 1H, OH). C27H20N6O5S: calculated C: 
59.77%, H: 3.69%, N: 15.49%. C27H20N6O5S: 
found C: 59.90%, H: 3.52%, N: 15.04%. (M+1) 
542.54 (EIMS). 
 
FP10: Yield= 31.51%, M. p= 192˚C. FT-IR (KBr) 
v/ cm-1 807.57 (para substituted aromatic ring 
def), 1644.98 (C=O str), 1384.71 (C=N str), 
1501.04 (–NH def), 2932.40 (C=S str), 1332.97 (N-
N=C str), 1594.13 (nitrogen containing 
heterocyclic ring in combination of C=C), 
1558.03 (C=N str), 1157.10 (Ar-OCH3). 1H NMR 
DMSO (300 MHz) δ ppm: δ 7.86 (s, 1H, N-H), δ 
7.14 (m, 14H, Ar-H), δ 3.31 (d, 2H aliphatic CH2), 
δ 2.50 (s, 1H, OH), 3.31 (t, 3H, OCH3 at 3rd 
position of aromatic ring), δ 2.50 (s, 1H, OH). 
C27H22N6O6S: calculated C: 57.96%, H: 3.94% 
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N: 15.05%. C27H22N6O6S: found C: 58.13%, H: 
4.02%, N: 14.85%. (M+1) 558.84 (EIMS). 
 
FP11: Yield= 28.18%, M. p=212˚C. FT-IR (KBr) 
v/ cm-1 1807.41 (mono substituted aromatic ring 
def), 1644.54 (C=O str), 1329.34 (C=N str), 
1308.12 (N-N=C str), 1266.29 (etheric linkage). 1H 
NMR DMSO (300 MHz) δ ppm: δ 7.58 (s, 1H, N-
H), δ 7.12 (m, 10H, Ar-H), δ 3.31 (d, 2H aliphatic 
CH2), δ 2.50 (s, 1H, OH), 8.11 (s, 1H, furan H). 
C24H18N6O5S: calculated C: 57.31%, H: 3.58%, 
N: 16.73%. C24H18N6O5S: found C: 57.30%, H: 
3.45%, N: 15.98%. (M+1) 502.90 (EIMS). 
 
FP12: Yield= 45.23%, M. p=188˚C.  FT-IR (KBr) 
v/ cm-1 807.48 (mono substituted aromatic ring 
def), 1644.98 (C=O str), 1331.87 (C=N str), 
1308.76 (N-N=C str), 1266.65 (etheric linkage).  
1H NMR DMSO (300 MHz) δ ppm: δ 7.859 (s, 
1H, N-H), δ 7.138 (m, 15H, Ar-H), δ 3.311 (d, 2H 
aliphatic CH2), δ 2.500 (s, 1H, OH), δ 7.480, 
5.265 (d, 1H, ethylene group of 
cinnamaldehyde). C28H22N6O4S: calculated C: 
62.39%, H: 4.08%, N: 15.61%, C28H22N6O4S: 
found C: 62.85%, H: 3.92%, N: 14.85%. (M+1) 
538.65 (EIMS). 
 

In vitro HDAC inhibition  
 
The in vitro HDAC inhibition activities of 
compounds FP1 - 12 are reported in terms of % 
inhibitory concentration (IC50). All the results 
were presented in Table 3 and Figure 4. 
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Figure 3: Basic pharmacophore of the synthesized 
structure 
 
Antiproliferative activity against MCF-7 cell 
line  
 
The in vitro cytotoxic activity of compounds FP1 - 
12 are reported in terms of % GI50 and the data 
are shown in Table 4. 

 
Table 3: In vitro HDAC inhibition activity of FP1 - FP12  
 
Compound code R1 R2 IC50  (µM)  
FP1 H Phenyl 6.2 
FP2 H 2-Hydroxyphenyl 5.4 
FP3 H 4-Mehoxyphenyl 2.1 
FP4 H 4-Hydroxy-3-Methoxyphenyl 0.16 
FP5 H Furfuryl 5.8 
FP6 H 1-Ethenylbenzene 5.3 
FP7 OH Phenyl 5.2 
FP8 OH 2-Hydroxyphenyl 4.5 
FP9 OH 4-Methoxyphenyl 1.6 
FP10 OH 4-Hydroxy-3-Methoxyphenyl 0.09 
FP11 OH Furfuryl 4.3 
FP12 OH 1-Ethenylbenzene 4.9 
SAHA --- ------------ 0.057 
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Figure 4: In vitro HDAC Inhibitory Activity against HDAC enzyme mixture derived HeLa cervical carcinoma cells 
of Sample FP1-FP12 with Standard SAHA 
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Table 4: In vitro cytotoxic profile of FP1 - FP12 against MCF-7 
 
Entry                 Anti MCF-7 Cell Line Activitya 

LC50 TGIb GI50
b 

FP1 >80 >80 57.3 
FP2 >80 >80 57.8 
FP3 >80 >80 54.2 
FP4 >80 >80 46.8 
FP5 >80 >80 53.2 
FP6 >80 >80 52.2 
FP7 >80 >80 46.3 
FP8 >80 >80 41.0 
FP9 >80 >80 22.8 
FP10 >80 >80 24.9 
FP11 >80 >80 55.3 
FP12 >80 >80 49.2 
ADRc 58.8 18.6 -50.2 
aEach value is the mean of three independent experiments; bLC50 = concentration of drug causing 50% cell kill; 
TGI = concentration of drug causing total inhibition of cell growth; GI50 = concentration of drug causing 50 % 
inhibition of cell growth; cADR = adriamycin (positive control) 
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Fig 4: In vitro Growth Inhibition on MCF-7 by Sample FP1-FP12 with standard adriamycin 
 
DISCUSSION 
 
Docking result suggested that compound FP3, 
FP8 have shown a significant favorable free   
energy of binding (-) 8.64 kcal/mol and (-) 8.86 
Kcal/mol which seems to be much close to that 
of the reference standard SAHA with -7.48 
kcal/mol. In the Fig 2 showed that the 
surrounding residues of FP3 the surrounded 
residues were VAL 175, LEU 262, GLY 265, LEU 
264, TYR 240, ILE 284, THR 268 and in the case 
of FP8 the surrounding residues were ALA 38, 
LEU 31, TRP 14, PHE 152, LYS 33, SER 39, 
ARG 37 which was subsequently present in the 
receptor voxel. HDAC8 receptor is a metal 

activated enzyme which consists of Zn 378 
residue in its active site and in all the cases the 
docked molecules are present within a suitable 
range. All the synthesized molecules are 
characterized by FTIR, 1H NMR, elemental 
Analysis, and mass Spectrophotometer. As per 
the spectral data of compound FP1-FP6, FTIR 
and 1H NMR showed presence of characteristic 
peak around 1600 cm-1, 3100 cm-1,  3300 cm-1 
due to C=O, -OH, -NH stretching, around 3000 
cm-1 for phenyl group, 1380 cm-1 for the etheric 
linkage and δ 2.500 ppm, around 7.200 ppm, 
around 7.800 ppm, around 3.38 ppm due to 
hydroxamic OH, Aromatic –H, -NH, -CH2 group 
respectively but the presence of para amino 
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group of the triazole moiety δ 5.793 ppm is 
missing the final set of compound. In the case of 
spectral data of compound FP7-FP12, as per the 
1H NMR absences of para amino group of the 
triazole moiety δ 5.622 ppm. Further, the 
structures were established by mass spectra 
data accordance to their molecular formula. The 
activity of new compounds FP1 - FP12 against 
HDAC enzyme mixture derived HeLa cervical 
carcinoma cells reported in Table 3 suggest that 
compounds (FP10, FP4, FP9) were showed 
apparently higher IC50 value as 0.09 μM, 0.16 
μM, 1.6 μM, 22.8 μM and 24.9 μM respectively 
as comparison to the standard SAHA molecule 
with 0.057 μM, among the result only FP10, FP9, 
FP4 were non-significantly varied from standard 
molecule data. However in the case of activity of 
new compounds FP1 - FP12 against MCF-7 cell 
line reported in Table 4 only FP9 showed relative 
GI50 Value with 22.8 μM as comparison to   
control Adriamycin (ADR) with GI50 value - 50.2 
μM, among the result only FP9 was non-
significantly varied from standard molecule data. 
 
CONCLUSION 
 
Hydroxyacetamide derivatives have been 
successfully synthesized and characterized by 
FTIR, NMR, elemental analysis and mass 
spectrometry. They exhibited inhibitory activity 
against HDAC enzyme mixture-derived HeLa 
cervical carcinoma cells and MCF-7 cell line. 
Further investigations are required the full activity 
profile and toxicological properties of the 
derivatives. 
 
DECLARATIONS 
 
Acknowledgement 
 
The authors are grateful to Central Instrumental 
Facility, CDRI, Lucknow; Dr Arti Juvekar, 
Principal, Department of Pharmacology and 
Toxicology, ACTREC; Tata Cancer Research 
Institute, Navi Mumbai and Dr Verma Ram for 
their Support. 
 
Conflict of Interest 
 
No conflict of interest associated with this work. 
 
Contribution of Authors 
 
The authors declare that this work was done by 
the authors named in this article and all liabilities 
pertaining to claims relating to the content of this 
article will be borne by them. 
 
 

REFERENCES 
 
1. Ragno R, Mai A, Massa S, Cerbara I, Bottoni P, Scatena 

R, Jesacher F, Loidl P, Gerald B. 3-(4-Aroyl-1-methyl-
1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a New 
Class of Synthetic Histone Deacetylase Inhibitors. 
Discovery of Novel Lead Compounds through Structure-
Based Drug Design and Docking Studies.  J Med Chem 
2004; 47: 1351-1359. 

2. Davis A, Hulme KL, Wilson GT, Mccord TJ. In vitro 
antimicrobial activity of some cyclic hydroxamic acids 
and related lactams. Antimicro agents and chemothera 
1978; 13: 542- 544. 

3. Kim DK, Lee JY, Kim JS, Ryu JH, Choi JY, JW Lee, Im 
GJ, Kim TKJ. Synthesis and biological evaluation of 3-
(4-substituted-phenyl)-N-hydroxy-2-propenamides, a 
new class of histone deacetylase inhibitors. J Med 
Chem 2003; 46: 5745-5751. 

4. Lu Q, Wang DS, Chen CS, Hu YD. Structure-Based 
Optimization of Phenylbutyrate-Derived Histone 
Deacetylase Inhibitors. J Med Chem 2005; 48: 5530-
5535. 

5. Belvedere S, Witter DJ, Yan J, Secrist JP, Richon V, 
Miller TA. Aminosuberoyl Hydroxamic Acids (Ashas): A 
Potent New Class of HDAC Inhibitors. Bioorg Med 
Chem Lett 2007; 17: 3969–3971. 

6. Mai A, Massa S, Lavu S, Simeoni S, Ragno R. Design, 
Synthesis, And Biological Evaluation of Sirtinol 
Analogues As Class Iii Histone/Protein Deacetylase 
(Sirtuin) Inhibitors. J Med Chem 2005; 48: 7789-7795. 

7. Goodsell DS, Morris GM, Olson AJ. Automated Docking 
of Flexible Ligands: Applications of Autodock. J Mol 
Recognit 1996; 9: 1-5. 

8. Morris GM, Goodsell DS, Halliday RS, Huey R, William E, 
Hart WE, Belew RK, Olson AJ. Automated docking 
using a Lamarckian genetic algorithm and an empirical 
binding free energy function. J Comput Chem 1998; 19: 
1639. 

9. Sousa SF, Fernandes PA, Ramos MJ. Protein-Ligand 
Docking: Current Status and Future Challenges.  
PROTEINS 2006; 65: 15.  

10. Huey R, Morris GM, Olson AJR, Goodsell DS. A 
Semiempirical Free Energy Force Field with Charge-
Based Desolvation. J Comput Chem 2007; 28: 1145. 

11. Reid JR, Heindel NDJ. Improved syntheses of 5-
substituted-4-amino-3-mercapto-(4H)-1,2,4-triazoles. 
Heterocyclic Chem 1976; 13: 925. 

12. Siddiqui SA, Bhusare SR, Jarikote DV, Pawar RP, 
Vibhute YB. New Novel synthesis and antibacterial 
activity of 1-(substituted phenyl)-2-phenyl-4-(3'-halo, 4'-
hydroxy, 5'-methoxy benzylidene)-imidazole-5-ones. Bull 
Kor Chem Soc 2001; 22: 1033-1036.  

13. Anandan SK, Ward JS, Brokx RD, Denny T, Bray MR, 
Patel DV, Xiao XY. Design and synthesis of thiazole-5-
hydroxamic acids as novel histone deacetylase 
inhibitors, Bioorg Chem Lett 2007; 17: 5995–5999. 

14. Skehn P, Storeng R, Scudiero A, Monks J, Mcmohan D, 
Vistica D, Jonathan TW, Bokesch H. New Colorimetric 



Saha et al 

Trop J Pharm Res, July 2016; 15(7): 1411  
 

Cytotoxicity Assay for Anticancer-Drug Screening. J Natl Cancer Inst 1990; 82: 1107. 
 


