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Abstract Methanotrophs are unique and ubiquitous bac-

teria that utilize methane as a sole source of carbon and

energy from the atmosphere. Besides, methanotrophs may

also be targeted for bioremediation of diverse type of heavy

metals and organic pollutants owing to the presence of

broad-spectrum methane monooxygenases enzyme. They

are highly specialized group of aerobic bacteria and have a

unique capacity for oxidation of certain types of organic

pollutants like alkanes, aromatics, halogenated alkenes, etc.

Oxidation reactions are initiated by methane monooxyge-

nases enzyme, which can be expressed by methanotrophs in

the absence of copper. The present article describes briefly

the concerns regarding the unusual reactivity and broad

substrate profiles of methane monooxygenases, which indi-

cate many potential applications in bioremediation of heavy

metals and toxic organic compounds. Research is needed to

develop understanding in plant–methanotrophs interactions

that optimize methanotrophs utilization in the field of envi-

ronmental remediation, while supporting other ecosystem

services.
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Introduction

There is a growing concern about global warming world-

wide. Methane (CH4) is one of the greenhouse gases

(GHGs), which contributes to global warming. Methane is

about 23 times more effective as a greenhouse gas than

carbon dioxide (CO2) (Hasin et al. 2010). Methanotrophs

are the only known significant biological sink for atmo-

spheric CH4 and play a crucial role in reducing CH4 load

up to 15 % to the total global CH4 destruction (Singh et al.

2010). Methanotrophs exist in a variety of habitats due to

having physiologically versatile nature and found in a wide

range of pH, temperature, oxygen concentrations, salinity,

heavy metal concentrations, and radiation (Barcena et al.

2010; Dubey 2005; Durisch-Kaiser et al. 2005; Lindner

et al. 2007; Tsubota et al. 2005). Broad-spectrum methane-

oxidizing methane monooxygenase (MMO) enzyme is

found only in methanotrophs, which possess two forms,

namely membrane-associated or particulate form (pMMO)

and soluble or cytoplasmic form (sMMO). The pMMO is

found in all known methanotrophs except for the genus

Methylocella (acidophilic) (Theisen et al. 2005), while the

sMMO is present only in a few methanotroph strains

(Murrell et al. 2000a, b).

There are several sources that generate huge amount of

toxic heavy metals/metalloids (Cr, Cd, Pb, As, Cu, Zn, Ni,

Hg, etc.) and organic pollutants into the environment

(Wijnhoven et al. 2007). Soils contaminated with heavy

metals and/or organic pollutants are generally left aban-

doned for several years and therefore may not be safe for

agricultural production. Recently, microbial bioremedia-

tion techniques have been found to alleviate the metal/

organic pollutant toxicity of contaminated soils (Hasin

et al. 2010; Shukla et al. 2009). Methanotrophs may be

promising bacteria for environmental bioremediation
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(Jiang et al. 2010). Methanotrophs have been shown to

degrade/co-oxidize diverse type of heavy metals and

organic pollutants due to the presence of broad-spectrum

MMO (Lindner et al. 2005; McFarland et al. 1992; Smith

and Dalton 2004). The MMO has been shown to oxidize a

wide range of substrates, including aromatic compounds

viz. halogenated benzenes, toluene, and styrene as well as

aliphatic hydrocarbons with up to eight carbons (Burrows

et al. 1984; Colby et al. 1977; Green and Dalton 1989).

Some of the comprehensive review articles provide

basic status and different perspectives of methanotrophs

viz. research history (Dalton 2005), extremophilic met-

hanotrophs (Trotsenko and Khmelenina 2002), taxonomy

and ecology (Hanson and Hanson 1996), methanotrophs

and CH4 oxidation related to wetlands (Chowdhury and

Dick 2013), properties of methane monooxygenase (MMO)

(Lieberman and Rosenzweig 2005), metabolic aspects

(Trotsenko and Murrell 2008), biochemistry (Anthony

1982; Hakemian and Rosenzweig 2007), gene regulation

(Murrell et al. 2000a, b), biotechnological applications

(Dalton 2005; Trotsenko and Khmelenina 2005), molecular

marker (Dumont and Murrell 2005; McDonald et al. 2007).

None of them paid attention to explain about bioremedia-

tion potential of methanotrophs. So, there is an urgent need

to re-tabulate the real involvement and benefits of this

unique microbe in bioremediation of toxic pollutants.

Broad substrate profiles of MMOs and its unusual reac-

tivity indicate diverse potential applications of methano-

trophs in bioremediation. Advancement in our knowledge

about methanotrophic bioremediation may facilitate their

wide applications for safe and sustainable environmental

development. This article has been aimed to highlight the

bioremediation potential of methanotrophs and provides a

moderate review on the progress made in methanotrophic

research related to bioremediation and identifying the

critical research needs for developing and implementing

successful methanotrophic bioremediation as a model

worldwide. The possible ways to maximize its multiple

uses for mitigating the various pollutants are also

suggested.

Remediation of hazardous organic pollutants

by methanotrophs

Methanotrophs synthesize both particulate and soluble

forms of methane monooxygenases (pMMO and sMMO,

respectively), which can co-metabolize diverse type of

hydrocarbons and halogenated organic compounds

including aromatics. The priority pollutants like trichloro-

ethylene (TCE) can be easily degraded by application of

methanotrophs (Jiang et al. 2010; Kikuchi et al. 2002;

Shukla et al. 2009). The majority of methanotrophs are

known to produce particulate methane monooxygenase

(pMMO) except few strains like Methylcella palustris

(Dedysh et al. 2000)—a known producer of soluble

methane monooxygenase (sMMO). The sMMO-expressing

methanotrophs, due to their relatively broad substrate range

(Shigematsu et al. 1999) and fast turnover kinetics, exhibit

fast decline in the level of pollutants than that calculated

for pMMO-expressing methanotrophs. In contrast to

pMMO, which works on a very narrow spectrum of carbon

substrate (alkanes and alkenes), the sMMO is capable of

oxidizing a wider range of organic compounds including

aliphatic, aromatic hydrocarbons, and their halogenated

derivatives (Trotsenko and Murrell 2008).

In contrast to other microbes that are recognized to

degrade halogenated hydrocarbons via reductive pathways

(Maymo-Gatell et al. 1999), the biodegradation of chlori-

nated hydrocarbons by methanotrophs occurs in an oxida-

tive manner (Lontoh et al. 2000). The oxidative

biodegradation carried out by MMO appears more signif-

icant than the reductive dechlorination of chlorinated eth-

enes, such as TCE and tetrachloroethylene, which often

results into accumulation of more toxic intermediates, e.g.,

vinyl chloride, a known potent carcinogen (Maymo-Gatell

et al. 1999). On the contrary, the MMO-mediated oxidative

mechanisms of degradation of halogenated compounds by

the methanotrophs do not accumulate hazardous interme-

diates (McCue et al. 2002). Thus, the applicability of

methanotrophic degradation of halogenated hydrocarbons

for in situ bioremediation of contaminated soil and water

system can be a safer remediation technique for sustainable

development of the environment.

Earlier it has been reported that trichloroethylene

(haloalkenes), a volatile chlorinated organic pollutant, is

generally resistant to biodegradation by microorganisms

(Wilson and Wilson 1985), but methanotrophs have been

shown to co-metabolize trichloroethylene by the potent

MMO enzyme (Van Hylckama Vlieg and Janssen 2001).

Stockholm Convention banned the use of persistent organic

pollutants (POPs) like lindane, which are highly carcino-

genic, persistent, bio-accumulative and endocrine disruptor

(ATSDR 2005). Under aerobic conditions, the degradation

of lindane [c-hexachlorocyclohexane (C6H6Cl6)] by bac-

teria occurs through repeated steps of dehydrochlorination

and dechlorination, and it gets converted to chlorobenzenes

and the end-product is carbon dioxide, which can be taken

up by plants (Mathur and Saha 1975; Vonk and Quirijns

1979). New, low cost and rapid screening tool for the

detection of microbes capable of degrading lindane has

been discovered (Phillips et al. 2001). The same assay
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technique may be used for identifying lindane-degrading

methanotrophs. Thus, there is an urgent need to examine

degradation of lindane by the potent MMO enzyme of the

methanotrophs. Similarly, the methanotrophs-mediated

environmental fate and degradation of polycyclic aromatic

hydrocarbons (PAHs) and polychlorinated biphenyls

(PCBs) need to be explored. Biodegradation of potentially

toxic PAHs has been examined by non-specific MMO

enzyme of marine methanotrophs (Rockne et al. 1998). The

aerobic catabolism of a PAH molecule by bacteria occurs

via oxidation of PAHs to a dihydrodiol by a multicompo-

nent enzyme system. The mechanism of bioremediation of

PAH involves ortho cleavage or meta cleavage type path-

way, resulting in the formation of protocatechuates and

catechols that are then converted to tricarboxylic acid

cyclic intermediate (Kanaly and Harayama 2000). In the

biodegradation of PCBs, the ability of methanotrophic

bacterium Methylosinus trichosporium OB3b, expressing

soluble methane monooxygenase, has been shown to oxi-

dize a range of ortho-halogenated biphenyls (2-chloro-,

2-bromo-, and 2-iodobiphenyl) although at lower rates than

the unsubstituted biphenyl (Lindner et al. 2000). Hydrox-

ylation is the dominant reaction during the degradation of

the aromatic ring, followed by dehalogenation. This type of

study provides a platform on how methanotrophs can be

used in conjunction with anaerobic degraders for the

removal of highly chlorinated biphenyls. Additional

research is still needed to determine how the products of

methanotrophic oxidation of ortho-substituted biphenyls

are further oxidized by heterotrophic microorganisms to

ensure complete mineralization (Lindner et al. 2000). Some

of the reports emphasize that polar regions are interesting

because of the presence of POPs, transported by a complex

mechanism involving successive volatilization and depo-

sition steps from warmer areas toward cooler regions

including Antarctica (Bengtson 2011). Barcena et al.

(2010) have reported methanotrophic methane oxidation in

Antarctica. There are several reports about the existence of

different psychrophilic methanotrophs from Antarctica

(Bengtson 2011). But very little information is available

about the nature of psychrophilic methanotrophs diversity

in contaminated sites, the genes that confer them the

capability for bioremediation as well as survival in the

extreme low temperature.

Pentachlorophenol (PCP), a highly substituted aromatic

compound, is extensively used as wood preservative, bac-

tericide, fungicide, and herbicide (Yuancai et al. 2007).

PCP has been listed as a pollutant by the US Environmental

Protection Agency owing to its toxicity. Under aerobic

condition, PCP is first converted to tetrachloro-p-hydro-

quinone by hydroxylation, and daughter products are

trichlorohydroquinone and dichlorohydroquinone, because

the activity of monooxygenase and dioxygenase was

inhibited by the substituted chlorine (Rasul and Chapala-

madugu 1991). In anaerobic condition, the PCP is first

reductively dechlorinated and converted to tetra-, tri-, di-,

and mono-chlorophenol (TetCP, TCP, DCP, MCP). Nev-

ertheless, these intermediates are more toxic than PCP and

are difficult to degrade (Yuancai et al. 2007). Since aerobic

degradation of metabolites is more feasible, complete

degradation of PCP is possible with the use of aerobic

methanotrophs and anaerobic microorganisms. Gerritse

et al. (1995) and Tartakovsky et al. (1998) have been able

to demonstrate complete degradation of tetrachloroethyl-

ene (aromatic compound) by using anaerobic dechlorinat-

ing and aerobic methanotrophic enrichment cultures or a

consortium of co-immobilized methanogenic and methan-

otrophic bacteria, respectively (Tables 1, 2).

Remediation of heavy metals by methanotrophs

Methanotrophic bacteria have considerable potential for

use in biotechnology and in bioremediation due to the

amenability of these bacteria to large-scale cultivation

(Jiang et al. 2010; Overland et al. 2010; Semrau et al.

2010). It has been suggested that methanotrophs also

influence the speciation and bioavailability of metals in the

environment (Choi et al. 2006; Jenkins et al. 1994). Hasin

et al. (2010) have reported the reductive transformation of

soluble and more toxic Cr(VI) into a less toxic

Cr(III)species by methanotrophic bacteria (Methylococcus

capsulatus Bath), as the Cr(III) is insoluble and tends to get

precipitated at high pH.

The importance of a toxicity reducing, Cu-carrier mol-

ecule is mainly linked to methanotrophs given their typical

habitat, i.e., geochemically distinct microaerophilic zones.

In such sites, intense redox cycling leads to active pre-

cipitation of Mn and Fe oxides (Ferris et al. 1999). CH4

oxidation requires Cu (due to its high reactivity), which, in

turn, demands a strong Cu defense system. There is a

molecular carrier for Cu, termed as methanobactin (mb)—a

1,216-Da fluorescent metal-binding chromopeptide (Kim

et al. 2004), which confers protection to the cells both from

external and internal Cu toxicity. The study of Knapp et al.

(2007) provides a strong evidence about the mb-mediated

Cu release from the mineral stage, which changes the Cu

availability and allows pMMO gene expression in met-

hanotrophs. Therefore, mb might be particularly critical for

ecological success of methanotrophs in such metal-polluted

environments where proteins like methanobactin (mb)

allow the selective acquisition of Cu, while protecting the
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methanotrophs against other similar potentially toxic met-

als. Microbial-based bioremediation of heavy metals, pro-

duced from metal plating, tanning, paper-making industries

(Cervantes et al. 2001; Hasin et al. 2010; Zayed and Terry

2003), can be used for detoxification of metals through

their conversion to less toxic and less soluble form like

Cr(III). Hasin et al. (2010) reported a well characterized

model of methanotroph Methylococcus capsulatus (Bath),

capable of bioremediation of chromium (VI) pollution over

a wide range of concentrations (1.4–1,000 mg L-1 of

Cr6?). The genome sequence of M. capsulatus (Bath)

suggested at least five genes for the chromium (VI)

reductase activity in this bacterium. Study of De Marco

et al. (2004) was the first attempt to systematically analyze

the capability of methylotrophic strains to develop toler-

ance against heavy metal pollutants. These workers iso-

lated thirty-one novel methylotrophic bacterial strains from

a range of soil and sediment sources (both pristine and

polluted). Furthermore, they noted that some of the isolates

exhibited interesting characteristics of resistance to heavy

metals, arsenate, or organic pollutants. Among them, four

strains were considered as real ‘super-bugs’ for their ability

to withstand extremely high concentrations of a variety of

heavy metal pollutants. The toxic mercury (II) ion is usu-

ally detoxified by bacteria via its reduction to elemental

mercury, catalyzed by an NAD(P)H-dependent mercuric

reductase enzyme (EC 1.16.1.1). It has been proved that

Methylococcus capsulatus (Bath)—a methanotrophic

member of the Gammaproteobacteria—uses this enzyme

to detoxify mercury (De Marco et al. 2004). In radio

Table 1 Methanotrophic bacteria involved in the bioremediation of various toxic hydrocarbon and heavy metal pollutants

Methanotrophic species Targeted organic pollutants References

Methylosinus trichosporium OB3b Halogenated hydrocarbons Hanson et al. (1990),

Oldenhuis et al.

(1991)

Methylomonas albus BG8, Methylocystis parvus OBBP, and

Methylosinus trichosporium OB3b

Polynuclear aromatic hydrocarbons and

transition metals

Jenkins et al. (1994)

Methylosinus trichosporium OB3b TCE Lontoh and Semrau

(1998)

Type II methanotrophs Phenanthrene, anthracene, and fluorene Rockne et al. (1998)

Methylocystis sp. M, Methylococcus capsulatus (Bath), Methylosinus

trichosporium OB3b, Methylosinus sporium strain 5, and

unidentified strains of methanotrophs (MP18, MP20, P14)

TCE-degradation Kikuchi et al. (2002)

Type II methanotrophs TCE Shukla et al. (2009)

Methylosinus trichosporium OB3b and Methylocystis daltona SB2 TCE, DCE, and VC Yoon (2010)

Methylocystis strain SB2 Vinyl chloride (VC), dichloroethylene (DCE),

trichloroethylene (TCE), and chloroform (CF)

Im and Semrau (2011)

Methanotrophic mixed culture Biotransformation of three

hydrochlorofluorocarbons (HCFCs) and one

hydrofluorocarbon (HFC)

Chang and Criddle

(1995)

Methanotrophic species Targeted inorganic pollutants References

Methylophilus methylotrophus EHg7 Cadmium (Cd) De Marco et al. (2004)

Methylophilus methylotrophus ECr4 Chromium (Cr) De Marco et al. (2004)

Methylococcus capsulatus Bath Chromium (Cr) Hasin et al. (2010)

Table 2 Methanotrophs that have been isolated from a wide variety

of habitats/environments

Variety of habitats References

Soils Dubey (2005)

Sediments Tavormina et al. (2008)

Landfills Ait-Benichou et al. (2009)

Groundwater Lindner et al. (2007)

Seawater Durisch-Kaiser et al. (2005)

Peat bogs/peat lands Larmola et al. (2010)

Hotsprings Tsubota et al. (2005)

Plant rhizosphere Qiu et al. (2008)

Salt reservoirs Heyer et al. (2005)

Antarctic Barcena et al. (2010)
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respirometry studies, it has been found that cells exposed to

mercury dissimilated 100 % of [14C]-methane and that

provided reducing equivalents to fuel mercury (II) reduc-

tion (Boden and Murrel 2011). Thus, methanotrophs not

only degrade the organic moiety but also aid in remediation

of inorganic elements. There are reports that few methan-

otrophic bacteria produce extracellular polymers with the

potential for industrial applications as well as for metal

bioremediation. It is an important point to examine the

broad-spectrum enzyme MMO of methanotrophs for its

capability to detoxify/transform other toxic elements into a

less toxic form as it depends upon the involvement of

enzyme-mediated redox reactions (Valls and de Lorenzo

2002). Thus, the use of methanotrophic bacteria in the

remediation of such toxic elements from contaminated sites

could be an emerging tool in more sustainable way.

Environmental stresses and methanotrophic

remediation

Adaptation mechanisms of methanotrophs at molecular

level under various stresses viz. temperature, pH, salinity,

sodicity, drought, and different types of chemicals are still

not known (Jiang et al. 2010). Some other environmental

factors well known to influence the population of met-

hanotrophs are the ammonium and/or nitrite ions as they

act as competitive substrates for MMO (Dunfield and

Knowles 1995; Hanson and Hanson 1996). The exact

mechanism of enzyme inhibition by nitrogen compounds

and methane oxidation still needs to be understood. The

main mechanism by which nitrogen inhibits methane oxi-

dation is through ammonium, which competes with meth-

ane for binding site on MMO in methanotrophic bacteria.

Although the affinity of MMO for methane is many folds

higher than its affinity for ammonium, excessively high

concentrations of ammonium is known to substantially

inhibit methane oxidation (Bedard and Knowles 1989).

However, recent studies with rice plants have revealed that

nitrogen fertilization increases CH4 oxidation in densely

rooted soils because rhizosphere methanotrophs face

intense plant and microbial competition for nitrogen

(Macalady et al. 2002; Eller et al. 2005). The information

about MMO-mediated methanotrophic remediation affec-

ted by nitrogenous compounds is almost lacking. Hence,

impact of nitrogenous compounds on methanotrophic

remediation needs to be investigated. However, modern

research in ‘omics’ technologies (proteomic, metabolomic,

genomic, soil metagenomic, and transcriptomic) may boost

our understanding on the adaptation potential of methan-

otrophs in various habitats and their bioremediation

potential in the presence of various stress conditions

including the presence of organic and inorganic pollutants.

To examine the impact of these environmental stresses on

methanotrophs in relation to bioremediation potential,

there is an urgent need for detailed studies to address these

questions.

Genetic engineering in methanotrophs for enhanced

bioremediation

With the aid of biotechnology and genetic engineering,

bacteria have been exploited for in-situ bioremediation of a

wide range of pollutants (Barac et al. 2004; Liu et al. 2011;

Villacieros et al. 2005). Genetic engineering of indigenous

bacteria, well adapted to local conditions, offers more

efficient bioremediation of polluted sites (Singh et al.

2011). Genetic engineering in methanotrophs may provide

opportunities to exploit the unusual reactivity and broad

substrate profile of MMO for maximum benefit in the field

of remediation technologies and to manipulate the toler-

ance, degradation potential of methanotrophs against var-

ious organic and inorganic pollutants through introduction

of desired genes. Thus, the development and application of

genetic engineering of the native methanotrophs will defi-

nitely offer more efficient and enhanced bioremediation of

the pollutants viz. heavy metals, organics or co-contami-

nants, making the bioremediation more viable for envi-

ronment remediation (Fig. 1). Some points have to be put

in mind such as bio-safety assessment, risk mitigation, and

factors of genetic pollution before using the genetically

engineered bacteria at field level (Singh et al. 2011)

including methanotrophs. However, the future application

of genetically engineered methanotrophs for pollution

remediation will not be free from the risks associated with

their release in the environment. The future risk regarding

use of such engineered bacteria is still unclear. The path-

way of safe application of efficient bioremediation through

genetically engineered methanotrophs: laboratory ? bench

scale ? pilot scale ? finally field scale testing ? com-

mercial field application, etc. is not a remote dream. There

is need to develop novel methanotrophs through the bio-

technological and genetic engineering approach to protect

the environment.

Limitations to methanotrophic bioremediation

High cell density cultivation, number of culture conditions,

and fermentation technologies for methanotrophs have

been studied extensively. However, there are still several
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limitations for methanotrophic study such as slow growing

strains, low solubility of methane, and oxygen in aqueous

phase (Jiang et al. 2010). It is general problem that toxic

intermediates may be formed during the aerobic degrada-

tion of chlorinated compounds which cause damage to the

bacterial cells. In this regard, utilizing a dichloromethane

(DCM)-degrading microbe which has an important DNA-

repairing mechanism in response to DNA damage caused

by formation of toxic intermediate during the degradation

of chlorinated compounds (Kayser and Vuilleumier 2001).

This bacterium utilizes DCM as a sole source of carbon and

energy. An aerobic bacterium was reported to degrade

mono- to trichlorinated dioxins with a newly discovered

enzyme, an angular dioxygenase known as carbazole 1, 9 a

dioxygenase (Habe et al. 2001). For characterization of

microbial populations, a new screening assay based on

quinone profiling (a culture-independent lipid biomarker

approach) has been developed for the analyses of in situ

microbial populations in dioxin-polluted soils (Hiraishi

et al. 2001). Knowledge of DNA repair mechanism

(important physiological tool) in dioxin-degrading bacte-

rial strain and bacterial screening assay in the dioxin-pol-

luted soil may help us in our understanding and prediction

of the methanotrophs-based degradation of chlorinated di-

oxins. Further more research is needed to eliminate these

limitations for exploitation of these promising methano-

trophs for human welfare.

Other research needs related to methanotrophs

It is well known that methanotrophs are ubiquitous in the

environment and globally important in oxidizing the

potent greenhouse gas methane. There is an urgent need

to optimize the effect of agricultural practices on this

microbe in different bio-geographical regions of the

world. The population dynamic and diversity of the

methanotrophs need to be studied with respect to edaphic

and climatic conditions of environment. A few citations

on these aspects have emerged recently (Vishwakarma

et al. 2009; Zheng et al. 2008; Singh et al. 2010; Singh

and Pandey 2013). Recently, plant–microbe interactions

have been suggested as a promising technology to

enhance phytoremediation (Rajkumar et al. 2012), which

offers a future tool for potential application of methano-

trophs for exploitation in other ecosystem services. Sev-

eral plants involved in interactions with rhizosphere-

associated microbes can be exploited to remediate toxic

environments (Weyens et al. 2009). But plant–methano-

trophs relations studied till date have mainly focused on

rice fields and wetlands because of their importance as

major areas of methane production (DeBont et al. 1978).

But the role of plant–methanotrophs interactions in the

field of remediation of toxic elements from contaminated

sites is still little explored. Plants can also take benefit

from these associations. Since methanotrophs can excrete

or release phytohormones (cytokinins and auxins) after

cell lysis and other bioactive compounds (Doronina et al.

2004), the plants can benefit from their association.

Additionally, different aspects of methanotrophs were

examined in the rice fields (Horz et al. 2001; Mohanty

et al. 2007; Singh et al. 2010; Singh and Pandey 2013;

Wu et al. 2009), but none of these were related to plant

growth-promoting methanotrophs. So, there is still need to

examine the plant growth-promoting activity of methan-

otrophs in agricultural fields. Similarly, methanotrophs

Harnessing 
methanotrophs 

for 
environmental
remediation 

Capping of methane from 
diverse fields

Remediation of organic 
pollutants

Remediation of toxic
elements

Genetically engineered 
indigenous methanotrophs for 

enhanced bioremediation

Does it show the activity of plant 
growth promoting rhizobacteria
in rice fields?

Role of plant–methanotrophs 
interactions in bioremediation

Fig. 1 A hypothetical model

showing the application of

methanotrophic bacteria for

environmental remediation
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should be collected from different agro-climatic zones of

the world for assessing their bioremediation potential. The

collected methanotrophs should be cultured and used in

different parts of the world for detailed morphological,

genomic, and molecular characterizations. The fast-grow-

ing methanotrophs could be used for remediation of dif-

ferent types of pollutants. The database knowledge

exchange program should be facilitated at the global level.

Remediation of soil pollutants by methanotrophs is

emerging fast. Methanotrophic bacteria in forest soil

exhibit the highest methane sink activity on a global scale

(Dalal and Allen 2008), but their methane sink capacity

decreases when natural land use pattern is altered (Dorr

et al. 2010). Methane sink activity (kg ha-1 year-1) by

methanotrophs in different ecosystems is increased in

order: sheep pasture (0.8) ? shrub land (2.3) ? disturbed

forest (2.9) ? pine forest (4.2) ? tropical forest

(4.6) ? subtropical forest (5.5) ? dry land paddy (5.8)

(Singh 2011). Considering the immense potential of

methane sink activity in tropical and subtropical forests,

widespread salt-affected denuded wasteland (about

955 9 106 ha) in arid and semi-arid regions (Szabolcs

1994), there is a great potential of methane sink activity

through afforestation program on these wasteland for better

growth of these bacteria (Pandey et al. 2011).

Conclusion

Methanotrophs were discovered over a century ago; how-

ever, methanotrophs have not been explored well. The

research related to bioremediation potential of methano-

trophs is still in infancy stage. For better harnessing of

methanotrophs in industrial application and bioremedia-

tion, a number of limitations need to be worked out such as

lack of suitable cultivable methanotrophs and isolation

techniques, competitive inhibition of methane mono-oxy-

genase by ammonium, low solubility of methane, produc-

tion of toxic intermediates. With the combination of

biotechnology and genetic engineering, methanotrophs can

be exploited for in situ bioremediation of a wide range of

inorganic and organic pollutants.
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