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Abstract Transportation resiliency is the ability for a

transportation system to maintain or return to a previous

level of service after a disruptive event. Among many

methods to assess resiliency, quality and quantity of mode

choice have shown to be promising. The provision of

multiple transportation options helps facilitate resiliency by

relieving the transportation system stress that tends to

occur in many situations when only one modal option is

available. This research seeks to understand how the

availability of environmentally friendly transportation

modal options—bicycling, walking, and transit—contrib-

ute to resiliency as caused by an abrupt doubling of gas

price. By creating a multinomial logistic regression mode

choice model for Denver, Colorado, we are able to measure

the resiliency value of various multimodal transportation

infrastructures, even if few people are using those facilities

today. Results of this study suggest three paths to resil-

iency: higher income, proximity to downtown, and the

availability of transportation options. There is a cumulative

effect in these results as well; for instance, low-income,

suburban areas tend to spend more of their household

budget on transportation than urban, higher-income areas,

thus increasing their vulnerability. Through this analysis,

we also investigate how this resiliency scenario affects

geographically and demographically diverse areas in

Denver, as well as how investments in more environmen-

tally sustainable modes of transportation can support more

resilient communities.

Keywords Transportation resiliency � Bicycling �
Walking � Transit � Multimodal transportation � Mode

choice

Introduction

Transportation is critical to sustaining the economic and

social vitality of communities. As these systems become

more complex and integrated regionally, nationally, and

internationally, their sustained safety and operation become

increasingly essential to the social, economic, and envi-

ronmental activities of a community (Hanson 2004). Given

this intrinsic relationship, the continued operation of these

transportation systems is critical to societal well-being

(Freckleton et al. 2012).

One aspect of transportation that is vulnerable to both

abrupt variability as well as long-term change—thus

causing significant disruption to individuals, households,

and the overall community—is the cost of gas. Gas prices

have been increasing over the last decade and are projected

to continue to increase (Lipman 2006). According to data

from the US Energy Information Administration, from

2002 to 2012 gas prices have increased more than 10 %

annually, compounded (‘‘Weekly U.S. All Grades All

Formulations Retail Gasoline Prices (Dollars Per Gallon)’’

2013). At this rate, gas prices would be more than $8.00/

gallon in 2020. Moreover, gas prices are also subject to

extreme volatility and have the potential to increase dra-

matically in a short time period. Such abrupt fluctuations

are difficult to guard against, as the events that might cause

them are unpredictable and often half a world away.

This research seeks to understand how the availability of

bicycling, walking, and transit modal options contributes to

resiliency as caused by an abrupt doubling of gas price. Our

R. Bronson (&) � W. Marshall

Department of Civil Engineering, University of Colorado

Denver, 1200 Larimer Street, Campus Box 113, Denver,

CO 80217, USA

e-mail: rachael.bronson@ucdenver.edu

123

Int. J. Environ. Sci. Technol. (2014) 11:2245–2258

DOI 10.1007/s13762-014-0583-2



hypothesis is that the availability of these more environ-

mentally friendly modes—even if few are using them

today—contribute significantly to the resiliency of a com-

munity. Although this approach is similar to the Center for

Housing Policy affordability work that measures combined

housing and transportation costs (Lipman 2006), we make

one important distinction: We do not assume that people

pursue the same transportation mode as they did in the

before case. In other words, two neighborhoods could be

very similar in many respects, but if one possesses good

active transportation infrastructure and/or decent transit

service, that neighborhood could conceivably be less vul-

nerable to an abrupt gas price increase. Understanding the

latent resiliency value of multimodal transportation options

is where our study hopes to make a contribution.

When a crisis arises, the households that are already

vulnerable because of their poor access to transportation

and other vital resources will be most deprived (Fitzgerald

2012). Such vulnerable households are often those that

have significant housing and transportation cost burdens.

Because of the constraints and budgetary limitations to

these households, they have the least access to coping

resources if a crisis arises. Collectively, these households

represent the weakest point in a city’s capacity to mitigate

such an event; in such a way, a catastrophic event not only

threatens the usefulness of physical infrastructure and the

built environment, but it also impacts social systems

(Lipman 2006).

Policies to overcome these risks have often focused on

lowering gas prices (Haas et al. 2008); however, gasoline

and motor oil average only 21 % of total transportation

expenditures (Bureau of Labor Statistics 2013). It is not

uncommon in the literature to model the economic impact

of increased fuel prices via scenario planning; for example,

a recent study suggested that the cost of fuel in Bangladesh

could increase from 1.4 % of GDP to 14.9 % in such an

increased fuel price scenario (Alam et al. 2013). To truly

overcome the economic and societal implications of

increased fuel costs, the goal must be to build resilient

cities that offer a network of sustainable systems and

communities (Newman et al. 2009). Broadly, resiliency is a

system’s capacity to manage unexpected events without

catastrophic failure (Heaslip et al. 2009). A city without

these resiliency measures is vulnerable to a threat that

arises (Godschalk 2003).

Much of the early resiliency research was qualitative

and looked at resiliency primarily through the lens of

natural disasters such as hurricanes, earthquakes, or tsu-

namis (Foster 1995; Chang and Nojima 2001; Bruneau

et al. 2003; Pelling 2003) or terrorist attacks (Battelle

2007). More recently, the concept of resiliency has become

more quantitative and expanded to transportation (Berdica

2002; Cova and Conger 2004; Husdal 2004; Murray-Tuite

2006; Heaslip et al. 2010; Serulle et al. 2011). While

overall resilience has been relatively well characterized as

a result of the many different disciplines working on the

issue, transportation resilience is less well defined. For

instance, overall resilience represents the ability to perform

under shock effects (shock absorption), to avoid the shock

altogether (vulnerability), or the ability to recover quickly

from a shock (shock counteraction) (Briguglio et al. 2005).

Yet transportation resilience has to do with the ability of

the transportation system to maintain a desired level of

service or the time it takes to return to that level of service

given a shock to the system (Heaslip et al. 2009, 2010).

The transportation research that has looked beyond

resilience related to natural disasters and terrorist attacks

has most often been economic (Echeverry et al. 2004;

Briguglio et al. 2005; Zheng et al. 2010) and focused on

issues such as gas prices (Dodson and Sipe 2006), but there

has also been a strand more focused on environmental

issues such as climate change (Brenkert and Malone 2005)

and the social impacts of combined housing and transpor-

tation costs (Lipman 2006). Today’s society has seen many

low-income households relocate away from downtown in

an effort to find more affordable housing (Lipman 2006).

Without options beyond the automobile, these are the very

same households that are likely to experience the greatest

negative impact of rising gas prices.

In the book Resilient Cities: Responding to Peak Oil and

Climate Change, Peter Newman et al. state that ‘‘[t]he

agenda for future resilient cities is to have sustainable

options available so that a city can indeed reduce its

driving or VMT’’ (vehicle miles travelled). Newman et al.

propose seven elements to achieve more resilient trans-

portation systems that have reductions in VMT; bicycling,

walking, and transit—as alternatives to driving—are cen-

tral to each of these elements (2009). VMT is linked to

negative effects of traffic safety, environmental health,

public health, energy consumption, and other social costs

of automobile user (Ewing and Cervero 2010); reducing

VMT is thereby fundamental to building resiliency. How-

ever, the capacity to reduce VMT—even if a community is

not doing so today—is equally important.

Decision makers need metrics and tools to assess

transportation system resiliency; however, predicting and

measuring transportation under disruptive events are

extremely complex. Nouri and Malmasi conduct an envi-

ronmental impact assessment of urban development in

Tehran using an ecological vulnerability model (2004). The

use of multiple metrics is another approach that has long

been used with sustainability (Rassafi and Vaziri 2005) and

is being used for resiliency as well. For example, Gods-

chalk and Murray-Tuite identify ten critical components

of transportation resiliency: redundancy, diversity, effi-

ciency, autonomous components, strength, collaboration,
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adaptability, mobility, safety, and the ability to recover

quickly (2003, 2006). Many of these elements are quali-

tative in nature; however, the work of Heaslip et al.

attempts to quantify many of these resiliency measures by

using a fuzzy inference approach (2009).

In the Heaslip et al. study, there are various attributes

that support resiliency; one attribute that is central to this

study is personal mode choice (2009). Transportation mode

choice, for the individual and community, is the opportu-

nity to use multiple means of transportation. The provision

of multiple transportation options helps facilitate resiliency

by relieving the transportation system of stress that tends to

occur in many situations when only one modal option is

available (Freckleton et al. 2012). Thus, creating a built

environment with transportation alternatives and land uses

that support them can be an important and effective strat-

egy for building resiliency into a system (Haas et al. 2008).

For the sake of this research, modeling such transpor-

tation options represents an opportunity to better under-

stand the impact of various resiliency scenarios. This

modeling process, conducted in the summer and fall of

2013, reveals how certain communities and neighborhoods

demonstrate different mode shift capabilities based upon

varying environmental and demographic circumstances.

This research also presents a unique understanding of the

option value of environmentally friendly transportation

infrastructures.

Materials and methods

The analysis in this paper focuses on the mode share for

work trips in the City and County of Denver following a

drastic gas price increase. Work trips were selected as they

represent travel that people would likely still need to make

after a gas price event. To assess this hypothetical mode

shift, actual trips made in the region are analyzed under a

series of gas price scenarios using a multinomial logistic

regression mode choice model. These trips were extracted

from the Denver Regional Council of Governments

(DRCOG) Focus travel model, a regional activity model.

This model was based on an in-depth travel behavior sur-

vey of 12,000 households in the Denver region, called

Front Range Travel Counts (Denver Regional Council of

Governments 2013).

The database output from the DRCOG Focus travel

model was provided to us in the information platform

Microsoft SQL Server. Several queries with specific char-

acteristics were executed, such as ‘Tour Type: Home

based’ and ‘Tour Purpose: Work’ to determine the number

of total work trips from each origin traffic analysis zone

(TAZ) to all work destination TAZ’s. The total trips were

broken down by the following four modes: automobile,

pedestrian, bicycle, and transit. The trips databases were

then aggregated from the TAZ to the census tract level for

the home origin. For the work destination, they were

aggregated from the TAZ to the neighborhood level (within

the City and County of Denver) or city (in the case that a

trip’s work destination was located outside the City and

County of Denver). There were a total of 143 home origins,

which comprises the total number of census tracts in the

City and County of Denver as configured in the 2010 US

Census; of these origins, the top four work commute des-

tinations were extracted. Four destinations were selected,

as this number offers a sizable portion of the total trips

taken in the census tract with respect to the overall distri-

bution while still offering a viable number of total regional

trips to analyze. Trips to the top four destinations were

investigated for each of the 143 census tracts, for 572 in

total. Data for each of the four transportation modes were

collected for each of these 572 trips; this equals 2,288

different combinations.

In order to understand the bike, pedestrian, auto, and

transit mode choices for each combination, the Google

Maps Engine Lite tool was consulted to determine the

suggested route for each mode between these origins and

destinations. The geographic coordinates of each census

tract centroid were determined and entered into Google

Maps as the starting location. For the neighborhood desti-

nations, the geographic coordinates of the centroid were

also used. However, if the destination was outside of

Denver neighborhoods and the destination was a city,

Google Maps was consulted to provide the best location for

the city’s geographic coordinates (as the centroid of a city

boundary does not often represent a city center). From

these results, the top trip route option was selected for each

mode, and several variables were recorded as follows:

• For the auto mode,

Travel time (minutes);

Trip length (miles); and

Whether the trip required limited access highway

travel.

• For the bicycle and pedestrian modes,

Travel time (minutes);

Trip length; and

Level of traffic stress for the trip (traffic stress

methodology is reviewed in the ensuing section).

• For the transit mode,

Travel time (minutes) and

Level of traffic stress for the trip.

The data collected via Google Maps are intended to

provide a sense of the lowest cost route by each mode;
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actual route choice between origins and destinations may

vary from Google’s suggestion, but such differences should

not be detrimental to our results. In the following section,

the traffic stress methodology is described in greater detail

including the relevant variables of interest.

Traffic stress methodology

In order to more realistically assess the alternative mode

options for each trip, accounting for the fact that not

everyone will bike, walk, or use transit—even in situations

where those modes offer the lowest dollar cost options—

we adapted and refined the bicycle level of traffic stress

approach developed by Mekuria et al. (2012). This meth-

odology classifies streets based upon their bicycle level of

traffic stress (LTS) that they exhibit to the user, and we

applied our own adaptation of this methodology to the

pedestrian and transit modes as well. A geographic infor-

mation system (GIS) was used to assign traffic stress levels

to Denver streets by the bike and walk mode, while Google

Maps was used to determine transit traffic stress. By esti-

mating the bike/pedestrian/transit LTS options, we were

able to more realistically assess the ability of different

population groups across Denver to shift to these modes

from the driving mode. The following sections describe the

methodologies used to determine these modal LTS levels.

Bicycle level of traffic stress

The bicycle LTS work of Mekuria et al. assigns four traffic

stress levels to street segments and intersections based on

characteristics such as operating space, speed, and inter-

section treatment (2012). In this methodology, we

attempted to reasonably measure the stress that different

types of bicyclists might experience while relying on

variables that were readily available or easily measurable.

The methodology we used for the analysis of Denver

streets, while based on the work of Mekuria et al., focused

on three traffic and street characteristics: speed, number of

travel lanes, and the presence of bicycle facilities. The two

data sources used in this analysis are as follows:

• A street database for the City and County of Denver

available in a GIS format with attribute data for each

street segment including the number of lanes, speed

limit, and functional classification (local, collector,

arterial);

• A street database for the City and County of Denver

available in a GIS file with all of the on- and off-road

bicycle facilities in Denver, including varying bicycle

treatments (bike lanes, cycle tracks, etc.).

Similar to the work by Mekuria et al., four levels of

stress were identified in the Denver methodology and

assigned to every street in the city. LTS 1 is acceptable for

all users and includes paved off-street paths and trails only.

Many adults tolerate LTS 2, while LTS 3 is unacceptable to

most. Finally, LTS 4 is the highest stress and is tolerated by

few individuals (Mekuria et al. 2012). The specific char-

acteristics designating each stress level are summarized in

Table 1 (with LTS 1 unlisted as it applies only to off-street

paths and trails).

As an addendum to the above criteria, we assessed

specific bicycle infrastructure on streets and adjusted traffic

stress accordingly. For instance, if a street characterized by

LTS 4 had a bike lane, this street was reassigned to LTS 3.

Also, if a lower traffic stress street intersected a higher

traffic stress street, the approaching lower-stress street

segment was reassigned the higher stress level. The ratio-

nale behind this is that a user will likely experience the

stress of the higher LTS street when crossing that street

even if the street that they were travelling on was defined

by a lower-stress level.

After each street in Denver was assigned a traffic stress

level, the top four work commute trips for each of the 143

Denver census tract origins were assigned a traffic stress

level based upon the stress of the streets along the trip route.

The LTS of the route was predicated by the highest traffic

stress value assigned to any street segment along the way;

thus, if a route contained largely LTS 2 streets but crossed

one LTS 4 arterial, then that route was assigned the highest

stress experienced by the user, or LTS 4. These values were

assessed and recorded for all 572 trips for the bike mode.

Pedestrian level of traffic stress

As with the bicycle LTS methodology, the pedestrian

approach we developed similarly intends to measure the

stress that pedestrians experience on a roadway by using

data that are measurable and readily available. The

pedestrian LTS was based upon three primary character-

istics: speed, number of travel lanes, and sidewalk width.

Since the bicycle LTS methodology measured these first

two variables, as well as the presence of bicycle facilities

[which are often installed as a countermeasure to improve

pedestrian safety (Harkey and Zegeer 2004)], the pedes-

trian LTS methodology was built upon the bicycle LTS

Table 1 Criteria for bicycle level of traffic stress (LTS), based on

posted speed limit and number of travel lanes, adapted from Mekuria

et al. (2012)

B25 mph =30 mph C35 mph

2–3 Lanes LTS 2 LTS 3 LTS 4

4–5 Lanes LTS 3 LTS 4 LTS 4

6? Lanes LTS 4 LTS 4 LTS 4
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designations. Given this approach and using the GIS data

built for the bicycle LTS levels, the pedestrian analysis

assigned traffic stress based upon the sidewalk width of

these bicycle LTS graded streets. The data available on the

sidewalk width were acquired from a citywide database in

a GIS file that included all of the sidewalks in the Denver

street network. Table 2 describes each pedestrian LTS

designation; in the criteria, the larger the sidewalk widths

contribute to lower pedestrian level of traffic stress. Since

this is based upon bike LTS, sidewalk widths of less than 5

feet are not applicable to the bike LTS value of 1 since all

bicycle paths (which exclusively represents bike LTS 1) in

Denver are greater than this width.

The process of assigning traffic stress to the pedestrian

mode option for the top four commute areas was similar to

the bicycle mode. Given the trip route suggested by Google

Maps, pedestrian LTS was based upon the highest stress

street experienced, and this was again repeated for all 572

walking trips.

Transit level of traffic stress

Instead of focusing on street and traffic characteristics for the

transit LTS methodology, this approach analyzed the transit

options available for each of the four trips using Google

Maps. Transit traffic stress was based upon two criteria: the

number of transfers required to make the trip and whether

these transit connections were available by light rail transit or

commuter bus. Cognitive research conducted in the USA and

Europe has shown an individual preference for light rail over

bus (Scherer 2010); thus, in this methodology, light rail

transit favors a lower traffic stress experience, as do fewer

transit transfers. Accordingly, transit traffic stress was

assigned based upon the following assignments:

• LTS 1: Light rail only;

• LTS 2: Light rail with one transfer; or bus only (no

transfers);

• LTS 3: Light rail with two transfers; or any other transit

combination (bus–bus or light rail–bus) with one

transfer; and

• LTS 4: Light rail with three or more transfers; or any

other transit combination (bus–bus or light rail–bus)

with two transfers.

For each trip origin and destination, the number of

transfers and transit options was assessed for the first route

suggested in the Google Maps results. For the transit

function, the Google Map tool defaults to the current date

and time that the user is investigating. Thus, a consistent

day and time were utilized: The trip was entered to arrive

by 8:00 AM on the nearest Wednesday. In the analysis, if

walking was determined to be more efficient than taking

transit, Google Maps often recommends walking as the first

option. In this case, the first instance that transit is rec-

ommended was utilized for that particular trip. Finally, if

there were no transit options available for a certain trip, no

LTS level was assigned. This procedure was repeated for

all 572 transit trips.

Statistical methodology

The statistical relationship between mode choice and a

drastic shift in gas price, with respect to the level of traffic

stress of the various modes, was investigated by using a

multinomial logistic regression model. The intent was to

provide us with a realistic understanding of who might be

able to access certain facilities. Many mode choice inves-

tigations fail to differentiate between different types of

infrastructures. For instance, the bicycle pavement marking

known as the sharrow (or shared-use arrow) that is present

on a busy street might not be modeled any differently from

a bike lane or a cycle track. In reality, there is a percentage

of the population that would ride everyday on a cycle track

but not in a bike lane, and there is another percentage of the

population that would ride in a bike lane but not on a route

marked with a sharrow. These distinctions are what we

were looking to model. Accordingly, the LTS proxy vari-

ables took into account the following: the presence of

different types of bicycle, pedestrian, and transit infra-

structure; characteristics of the street such as number of

lanes and speed of traffic; and functional classification of

the street. Also considered were travel time and distance

between origins and destinations, and population density

and socioeconomic status (SES) variables such as house-

hold income and the percentage of minorities. Interactions

among the selected variables were also tested and ana-

lyzed; in particular, interactions between the LTS and SES

variables were tested. The variables used in the final

models were selected in an effort to maximize model sig-

nificance using the Akaike Information Criterion (AIC)

value. With respect to multi-collinearity, none of the

variables used in the final models were highly correlated

Table 2 Criteria for pedestrian level of traffic stress (LTS) based

upon sidewalk width and bicycle LTS (where a LTS does not apply to

sidewalk widths of less than 5 feet)

Bike LTS 1 Bike LTS 2 Bike LTS 3 Bike LTS 4

Sidewalk

C5 ft

LTS 1 LTS 1 LTS 1 LTS 3

Sidewalk 4 ft n/a LTS 1 LTS 2 LTS 3

Sidewalk 3 ft n/a LTS 2 LTS 3 LTS 4

Sidewalk

B2 ft

n/a LTS 3 LTS 4 LTS 4
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with one another. For instance, travel time and distance

between origins and destinations are highly correlated

variables, both of which should not be used as independent

variables in the same mode choice mode. Travel time

turned out to be the more highly significant variable and

was used in the final model.

The basic structure of a multinomial logistic regression

mode choice model is derived from a basic logit model.

The following generalized logit equation determines the

probability of choosing a specific mode (Martin and

McGuckin 1998).

Pi ¼
eui

Pk
i¼1 eui

where Pi = probability of somebody choosing mode i = 1,

2,…, k; ui = utility function describing the relative

attractiveness of mode i; and
Pk

i¼1 eui = sum of the

functions for all available mode alternatives.

The probability of choosing a particular mode depends

on the above utility function relative to the utility functions

for all the other mode options. In conventional four-step

model transportation planning, the utility function of the

logit equation typically contains variables such as in-

vehicle travel time, out-of-vehicle travel time, and the cost

associated with each mode for a particular type of trip

between two specific zones. Our utility functions included

travel time and costs but also took into consideration the

level of traffic stress for bicycling, walking, and transit, and

with respect to driving, whether or not the trip includes a

limited access highway. Four mode types were modeled—

transit, walking, biking, and driving—and to account for

four separate categorical outcomes, a multinomial logistic

regression model was used (Ben-Akiva and Morikawa

2002). A multinomial logistic regression simultaneously

considers a binary logit model for every possible combi-

nation of outcomes; in this study, the four different out-

comes are equivalent to six binary logit models (Long

1997). One assumption of this model is that the probabil-

ities related to the mode choices sum to 1:

P transitð Þ þ P walkingð Þ þ P bikingð Þ þ P drivingð Þ ¼ 1:

For such a probability-based model, the multinomial

logistic regression equation is as follows:

P yi ¼ 1jxið Þ ¼ 1

1þ
PJ

j¼2 eðxibjÞ
for m ¼ 1

P yi ¼ mjxið Þ ¼ xibm

1þ
PJ

j¼2 eðxibjÞ
for m [ 1

where y = dependent variable, j = number of categorical

outcomes for four mode choices, P y ¼ mjxð Þ = probability

of choosing mode m given x, xi = independent predictor

variable, and b = estimated coefficient representing the

effects of the independent variable.

The probability of the four modes (transit, walking,

biking, and driving) was calculated for the top four work

trip destinations for each Denver census tract origin using

the multinomial logistic regression model for a baseline

gasoline price of $2.70 and a doubling of that price to $5.40

per gallon. The base gas price was chosen because it was

the prevailing gas price estimate for Denver region when

the Front Range Travel Survey (a 12,000 household travel

survey for the region from which our data were gathered)

was being administered (Denver Regional Council of

Governments 2013). This gas price was used to determine

the average annual cost of gas for each 572 commute trips

using an average vehicle efficiency of 20.2 miles per gal-

lon, which was the national average during the same time

period (Environmental Protection Agency Office of

Transportation and Air Quality 2007). We then calculated

the average annual percent of the median household

income spent on gas for each census tract on commute

trips, a value that could be doubled in the model to reflect

the resiliency scenario. This informed the cost of driving

for these work commute trips.

Table 3 provides the descriptive statistics of all of the

data that were put into the model. This includes the fol-

lowing for each variable: the minimum and maximum

values, the mean, standard deviation (SD), and the num-

ber of observations. The values in Table 3 represent the

data for each origin via all four modal options. For

instance, the average number of minutes walking to work

value is based on all origins to all destinations, which

does not reflect actual behavior but is needed for the

mode choice model. Table 4 shows the results of the

mode choice model.

Results of the mode shares for a given home census tract

were weighted based upon the relative number of trips. For

example, if the top 4 destinations for a home zone have 100

people total and 60 of them were going to destination A

with 80 % auto mode share, 20 to B with 60 % auto mode

share, 15 to C with 90 % auto mode share, and 5 to D with

40 % auto mode share, the home census tract automobile

mode share would be 75.5 %, as follows:

0:755 ¼ 0:8 60ð Þ þ 0:6 20ð Þ þ 0:9 15ð Þ þ 0:4ð5Þ
100

:

To determine mode shift at the census tract level after a

twofold increase in gas price, each trip taken in each

Denver census tract was averaged and normalized based

upon the actual number of trips taken for each origin and

destination. Data used for this analysis were from the 2010

American Community Survey (ACS), administered by the

US Census (Social Explorer 2013).
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Results and discussion

Census tract analysis

In reporting the results, we first explore expected trends at

the census tract level for the entire City and County of

Denver, and then we explore trends and contributing fac-

tors further by investigating expected changes at six spe-

cific census tracts. We compare mode shifts at the census

tract level in Denver in a scenario where the gas price

doubles, from a base price of $2.70 per gallon (the baseline

scenario) to a twofold increase of $5.40 (the resiliency

scenario).

For each 143 Denver census tracts, after the resiliency

scenario, car mode share decreased by varying amounts,

while bicycle, walking, and transit mode shares increased.

These data are best depicted spatially in Fig. 1, where the

changes in car mode shares in each census tract are shown.

Figure 1 is compared side-by-side to Fig. 2, where the

change in driving mode share is displayed with income

held constant. Figures 1 and 2 also illustrate the major

street network, bicycle paths, and light rail facilities in

Denver.

Those census tracts that have the highest change in

driving mode share, displayed in Fig. 1 as the darker

shaded color, have a greater shift away from driving to

transit, biking, and walking. Many of these census tracts

appear to be located away from the Central Business Dis-

trict (CBD), particularly scattered throughout the south-

western areas of Denver. On the other hand, those census

tracts with the lowest shift in driving mode share appear to

be clustered around the CBD and in the northeast areas of

Denver. These more urban census tracts already have a

lower driving mode share; thus, the driving mode shift after

the resiliency scenario is less acute. Other socioeconomic

or demographic factors may also affect the shift as it occurs

in different geographic census tracts.

In order to understand what other factors may be

impacting these trends, we held income constant for all

Denver census tracts and displayed the results in Fig. 2.

The Metro Denver Economic Development Corporation

reports that for 2011, the median household income in

Denver was $59,230 (Metro Denver Economic Develop-

ment Corporation 2013). In Fig. 2, the darker colors again

indicate the higher shift away from driving mode share.

There is a significant group of these census tracts with a

higher shift away from the driving mode share located

south of the CBD. These census tracts are not adjacent to

the CBD, but they are surrounded by high ease-of-use

transit and bicycling facilities: light rail transit and multiple

Table 3 Descriptive statistics of the data used in the multinomial logistic regression mode choice model

Variable Obs Mean SD Min Max

Misc.

Population of origin census tract 2,288 4,129.42 1,567.84 314.00 9,462.00

Population density of origin census tract 2,288 7,032.95 3,938.61 28.51 24,770.81

Percent minority in origin census tract 2,288 25.20 17.12 0 79.91

Median HH income of origin census tract 2,288 52,354.48 24,550.32 9,571.00 153,571.00

Automobile

# of driving miles to work (avg.) 2,288 6.47 4.74 0 27.40

# of minutes driving to work (avg.) 2,288 13.80 6.61 0 40

Whether car trip to work includes hwy driving (avg. of 0, 1 variable) 2,288 0.46 0.50 0 1

Proportion of income spent on annual driving to work (avg.) 2,288 0.01 0.01 0.00 0.11

Transit

# of minutes for transit trip to work (avg.) 2,224 44.60 23.73 0 123

# of transfers for transit trip to work (avg.) 2,224 0.55 0.64 0 3

Whether transit trip to work includes light rail (avg. of 0, 1 variable) 2,224 0.14 0.35 0 1

Transit LTS score for trip to work (avg.) 2,224 2.48 0.72 0 4

Walk

# of walking miles to work (avg.) 2,288 5.86 13.01 0 304.00

# of minutes walking to work (avg.) 2,288 106.00 71.62 0 469

Walking LTS score for trip to work (avg.) 2,288 3.60 0.66 0 4

Bike

# of biking miles to work (avg.) 2,288 6.22 4.28 0 26.80

# of minutes biking to work (avg.) 2,288 35.35 23.30 0 138

Biking LTS score for trip to work (avg.) 2,288 3.93 0.44 0 4
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bicycle paths. Thus, it appears that there are factors in

addition to income that may be impacting mode share, and

further analysis is merited to better understand what these

elements may be.

Census tract study areas

Study area characteristics

Since it seems that geographic and demographic factors

impact transportation choices after the change from the

baseline to the resiliency scenario, we take a closer look at

mode shift trends in six Denver census tracts. In selecting

these census tracts, our variables of interest are proximity

to downtown and income. We selected three census tracts

that are situated closer to the city center and three that are

in more suburban locations. We also chose census tracts

that have low, middle, and high median household

incomes, selecting two in each income range (based on

2010 ACS household income values) (Social Explorer

2013). To facilitate the comparison, we also selected cen-

sus tracts that share the following two top work

Table 4 Results of the mode choice model

Variable Transit Walking Biking

Intercept 0.6197*** 1.9941*** 1.1106***

Miscellaneous

Population of origin census tract 0.00008 0.00021 0.00014***

Population density of origin census tract 0.000071*** 0.000095*** 0.000055***

Percent minority in origin census tract 0.00799*** 0.0155*** 0.0032*

Median HH income of origin census tract 0.00000294** 0.000003639** 0.000007592***

Driving

# of driving miles to work (avg.) 0.1477*** 0.7477*** 0.1907***

Proportion of income spent on annual driving to work (avg.) 45.4014*** 66.357*** 50.6937***

Transit

Transit LTS score for trip to work (avg.) 0.4131*** 0.0249 0.3663***

Whether transit trip to work includes light rail 0.7098*** 0.4461*** 0.2331**

Walking

Walking LTS score for trip to work (avg.) 0.313*** 0.3473*** 0.2145***

Model fit

Observations 2,224

* p \.10, ** p \.05, *** p \.01

Fig. 1 Change in car mode

share by census tract in City and

County of Denver after the

resiliency scenario
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destinations: Denver CBD and the City of Aurora (located

to the east of Denver city limits).

The six census tract origins that were selected for this

analysis will be referred to by the neighborhood contained

within the census tract, not by the census tract number.

Globeville, an urban census tract with lower household

income, is located just north of the CBD. College View/S

Platte is a lower income, suburban census tract that is

located in the southern part of the Denver city/county

limits. City Park West is a middle-income census tract that

is located just east of the CBD. Sunnyside is also a middle-

income census tract, but it is located in the northwestern

portion of the Denver limits. Finally, Country Club is a

higher-income census tract that is located directly southeast

of the CBD, while Stapleton is high-income census tract

that is located near the northeast corner of Denver city/

county limits (Table 5 describes these census tract selec-

tions in further detail).

Work trips from these six census tracts to two desti-

nations (Aurora and the CBD) were analyzed. Aurora

and the CBD are two of the top four of work commute

destinations for each origin census tract. Additionally, the

CBD and Aurora represent an urban and suburban desti-

nation, respectively, which is relevant to our analysis of

urban and suburban trip origins.

In the analysis of these census tracts, three elements

have a significant impact on mode shift in our six census

tracts and are further explored: proximity to downtown,

income, and availability of multimodal transportation

infrastructure.

Proximity to downtown

Results from the mode choice model reveal that for the six

Denver census tract study areas, the driving mode share is

consistently higher for suburban census tracts origins as

compared to their urban counterparts. Trips from Stapleton,

Sunnyside, and College View/S Platte have higher driving

mode share than trips from Country Club, City Park West,

and Globeville. Figure 3 illustrates these trends for work

trips from the six census tract study areas to the CBD. This

trend is particularly acute for the higher-income census

tracts: Stapleton and Country Club. A factor influencing

this is that Stapleton is significantly further from the CBD

than Country Club (12 miles vs. 2.9). Globeville and

College View/S Platte—low-income census tracts—also

are quite different in their distance to the CBD (3.4 and

17.8 miles, respectively), but do not display the driving

mode share difference that the high-income study areas do.

Another interesting trend related to the driving mode

share is that all trips to the CBD, regardless of the origin,

have lower driving mode share than those same trips to

Aurora. So, in addition to driving mode share being

impacted by proximity to downtown of the trip origin, it is

also impacted by the proximity to downtown of a house-

hold’s destination. Figure 4 displays this trend.

When comparing the trends in Figs. 3 and 4, we see that

the car mode share from Stapleton to the CBD (95 %) and

to Aurora (97 %) for the resiliency scenario remains fairly

unchanged. In these cases, nearly all of the households are

already opting to drive for both their trip to Aurora and the

Fig. 2 Change in car mode

share after the resiliency

scenario where income is held

constant at $59,230
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CBD. However, most of the other study areas show a

significant increase in car mode share for the trips to

Aurora when compared to the CBD for the resiliency

scenario. Because of this overall higher mode share across

all study areas, the difference in car mode share between

urban and suburban census tracts and Aurora is less dra-

matic than it was in Fig. 3.

Income

One important impact of the trip distance differences for

those people living in the urban and suburban origins,

particularly as it relates to resiliency, is the fact that it

directly impacts their household budgets in terms of gas

expenditures. Those households in the suburban origins

that have a farther distance to travel for work trips are

spending more money on gas than their urban counterparts.

This discrepancy impacts low-income households more

than high-income areas in terms of the percent of income

spent on gas. With high household income, these census

tracts have more capacity to withstand increases in gas

price than those areas with more constrained financial

resources. For this reason, we would expect to see less of a

change in driving mode shift for high-income areas when

compared to lower-income areas after the resiliency

scenario.

This trend is indeed apparent in Fig. 4 for trips to

Aurora. For the middle- and higher-income house-

holds with the resiliency scenario, car mode share gener-

ally remains high. With more income available to these

high-income households, they can better cope with higher

costs of driving and do not necessarily have to change their

travel behavior to mitigate the impact to their budget. On

the other hand, for the low-income households (Globeville

and College View/S Platte), car mode share falls more

substantially in the resiliency scenario. The same trend

occurs for trips to the CBD as displayed in Fig. 3, although

it is less acute. In Fig. 3, the shift away from driving after

the resiliency scenario is greater for the lower-income

census tracts than for the middle- and higher-income

households.

To further understand this trend, we determined the

percent income spent on gas for each trip. As discussed in

the ‘Materials and Methods’ section, we were able to cal-

culate this value based upon the length of the trip in miles,

and assuming an average vehicle efficiency of 20.2 miles

per gallon (Environmental Protection Agency Office of

Transportation and Air Quality 2007). Results revealed that

higher-income households (Stapleton and Country Club)

spent the least percentage of their household budget on gas

for trips to Aurora than any other census tracts being

reviewed—even with the resiliency scenario (see Fig. 5).

For trips to the CBD in the resiliency scenario, lower-

income households spent more of their income on gas than

other areas. When compared to percent of income spent on

gas for trips to Aurora, trips to the CBD have less impact

on household income—which again is due to the distance

of these trips and amount of gas used. Finally, suburban

trips have a higher percent income spent on gas than their

urban counterparts, except for the Stapleton to Aurora trip

(which relates to the fact that this trip is shorter in distance

than Stapleton to the CBD).

In order to understand how other factors may be influ-

encing mode share, we again hold income constant, this

time specifically for the six census tract study areas. In

doing so, we expect to better understand the extent to

which proximity to downtown and other variables may

impact mode share. With a median household income

Fig. 3 Car mode share to the

CBD in the baseline and

resiliency scenario for the six

census tract study areas
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again adjusted to $59,230 for the six census tract study

areas, car mode share in certain areas experiences some

interesting changes, as depicted in Table 6 (Metro Denver

Economic Development Corporation 2013). Table 6 lists

the changes in car mode share for the baseline and resil-

iency scenarios under their normal household income as

well as the values before and after the resiliency scenario

under the adjusted income.

In Table 6, for both the actual and adjusted incomes, the

baseline car mode shares are consistently higher than the

resiliency scenario car mode shares. Country Club and

Stapleton (which normally exhibit median household

income above $130,000) experience a greater shift in

driving mode share under this adjusted income level with

the resiliency scenario. With less income at their disposal,

the formerly higher-income areas have a greater shift away

from driving when their income is adjusted to $59,230. On

the other hand, the lower-income households in Globeville

and College View/S Platte have less of a shift away from

the driving mode share when their income is adjusted. In

other words, these formerly lower-income areas maintain a

higher driving mode share during the resiliency scenario

when their income is increased to the adjusted value of

$59,230; with more income, these areas would be less

reliant on alternative modes of transportation in coping

with the resiliency scenario.

Another trend under the adjusted incomes is that two of

the more urban census tracts, Country Club and Globeville,

have a higher shift away from the driving mode share after

the resiliency scenario than their suburban counterparts. In

these areas, more people are opting to take alternative

forms of transportation with the resiliency scenario. How-

ever, City Park West, the third urban census tract, does not

display this trend, which suggests that another demo-

graphic or environmental factor may be involved in

favoring Sunnyside (suburban, middle-income census tract)

Fig. 4 Car mode share to

Aurora in the baseline and

resiliency scenarios for the six

census tract study areas

Fig. 5 Percent of income spent

on gas for households traveling

to Aurora at both the baseline

and resiliency scenarios
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to have a greater shift driving mode shift. Finally, the areas

with the highest driving mode share under the adjusted

income are Stapleton and College View/S Platte, which are

farther from downtown.

Alternative transportation infrastructure

An important influence to mode share for certain census

tracts is the availability of low-stress, environmentally

friendly transportation options. With more transportation

modes available to urban origins, individuals and house-

holds—particularly those with budget constraints—may

choose transportation options other than driving for their

work travel needs. Thus, in addition to proximity to

downtown, another variable that impacts mode shift is

availability of active transportation options—and the level

of traffic stress of those options.

In the mode choice model, bicycle LTS was removed

since it was highly correlated with walk LTS. Thus, we

analyzed walk LTS to understand how bike LTS may also

correlate with mode choice. For the walk mode, only three

trips to the CBD from census tract origins are of the lowest

traffic stress, LTS 3: Sunnyside, City Park West, and

Country Club. Consequently, these trips have some of the

highest walk mode share, respectively: 4, 22, and 10 %

(reported for the baseline scenario). It is interesting to note

that Country Club and City Park West are urban areas

(while Sunnyside is not); yet, they all have the highest walk

mode shares of all six study areas. This suggests that the

low traffic stress walking experience for those traveling

from Sunnyside to CBD is correlated with improving the

walk mode share for this suburban area. During the resil-

iency scenario, these walk mode shares for Sunnyside, City

Park West, and Country Club increase to 6, 24, and 11 %

(respectively). Because these trips are less stressful, trav-

eling along streets with lower speed, wider sidewalks, and

fewer lanes, individuals are more likely to shift to the walk

mode for their work transportation needs.

Another area of analysis indicating that factors related to

the transportation environment impacted the trips from

Country Club, City Park West, and Sunnyside were the

results in Table 6. We will recall that in Table 6, when

income is held constant, the areas with the largest shifts

away from driving mode share include these census tracts.

Table 5 Household and housing characteristics of each origin census tract in Denver (Social Explorer 2013)

Low income Middle income High income

Globeville College/ S Platte City Park West Sunnyside Country Club Stapleton

Driving distance to CBD (miles) 3.4-urban 17.8 2.9-urban 3.7 2.9-urban 12

Median HH income $24,190 $30,076 $51,371 $51,163 $130,321 $133,393

No. persons per HH 3.1 3 2.2 2.5 2.5 2.8

Home values $164,200 $170,300 $325,100 $218,500 $723,100 $458,600

Monthly rent $833 $710 $667 $714 $964 $1682

Pop density 1544 4258 7302 5705 4761 1686

% Non-white 30 % 37 % 30 % 20 % 16 % 17 %

% Hispanic or Latino 80 % 64 % 10 % 62 % 4 % 16 %

Table 6 Car mode share normalized for six census tract study areas under a normal and an adjusted income of $59,230

Car mode share under actual 2012 median

household income

Car mode share with income held constant at $59,230

Baseline

scenario (%)

Resiliency

scenario (%)

Change in car

mode share (%)

Car mode share,

adjusted income (%)

Resiliency car mode share,

adjusted income (%)

Change in mode

share (%)

Country Club 73.5 71.2 -2.3 75.8 70.6 -5.2

Stapleton 94.6 93.8 -0.8 95.1 93.1 -2.0

City Park

West

58.0 53.3 -4.7 57.9 54.0 -3.9

Sunnyside 81.9 75.8 -6.1 82.1 77.2 -4.9

Globeville 76.7 64.6 -12.1 79.5 76.0 -3.5

College

View/S

Platte

87.6 76.8 -10.8 89.6 86.2 -3.4
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Given that only two of the census tracts (Country Club and

City Park West) are proximate to downtown suggest that

other factors allow for the higher shift away from driving

mode share for Sunnyside, which is not as near to down-

town. After this analysis of alternate modes of transporta-

tion, it is clear that the level of traffic stress is important in

impacting that mode shift.

When compared to trips to the CBD, walking trips to

Aurora are more stressful. No trips to Aurora by foot are

less than LTS 4. This suggests the extent to which this

suburban destination does not support the pedestrian mode

of transportation and how the driving mode share to Aurora

from households throughout Denver remain as high as it is

(refer to Fig. 4).

Transit LTS is measured by the number of transfers and

whether the trip includes light rail transit or commuter bus.

Of all of the trips in the study areas, the only trip of LTS 4

is from Stapleton to Aurora. This trip has the lowest transit

mode share of 3.2 % at the baseline scenario. Trips that are

of transit LTS 2 range in mode share from 3.7 to 21.0 %,

with the lower range value being impacted by a higher trip

length and duration.

Sunnyside, the more suburban of the middle-income

census tracts, has a higher transit mode share to Aurora

than that same trip from City Park West, its urban coun-

terpart. This is likely because the transit level of traffic

stress from Aurora to Sunnyside is only a value of two,

while to City Park West it is LTS 3. This indicates that the

trip from City Park West is more stressful than the trip

from Sunnyside with respect to the number of transfers

(since light rail transit does not serve this trip). This further

demonstrates how the transit experience, measured in

traffic stress, can influence mode share even when there

may be disparities in trip length and distance.

Conclusion

In measuring mode shift before and after a drastic increase

in gas price, this study sought to understand how certain

areas in Denver, CO, with various environmental and

demographic characteristics, are better equipped to return

to a normal level of service than other areas. In terms of

this mode shift, we focused not on how individuals are

behaving today, but on what they have the ability to do in a

disruptive gas price event based upon these environmental

and demographic characteristics. Results of the model

revealed that certain neighborhoods and individuals are

better suited to withstand a disruptive gas price event.

Three attributes appeared to be most relevant in these

trends: household proximity to downtown, median house-

hold income, and the availability of multimodal transpor-

tation options. All told, the closer to downtown, the higher

the household income, and the better the accessibility to

environmentally friendly and lower stress modes of trans-

portation, the better able certain areas in Denver are to

react to the disruptive event.

Several limitations should be considered in this research.

For the traffic stress analysis, lack of data about average

annual daily traffic or actual speeds along roads limited the

analysis of stress along certain roads. Additionally, the

sidewalk data provided by the City and County of Denver

were ten-year old and did not offer an up-to-date under-

standing of sidewalk presence and condition. In the

assignment of traffic stress to trips, extrapolating from the

TAZ to the census tract may have diminished accuracy of

the trips, further exacerbated by the random selection of

census tract or neighborhood centroid as the start and end of

each trip. In the development of the mode choice model, it

was assumed that the total of car, transit, walk, and bicycle

modes would equal 100 %, which is not necessarily accu-

rate as some people telecommute and work from home.

Despite these limitations and assumptions, the contri-

bution of this work to understanding travel behavior under

a resiliency scenario is critical. This research offers an

important approach to valuing transportation options and to

understanding the latent worth of environmentally sus-

tainable infrastructure, even if it is not heavily used today.

Future direction of this research is promising. By utilizing

a mode choice model to understand where reductions in

traffic stress offer significant shifts to these alternative

modes, we can better understand what infrastructure

improvements to the current bicycling, walking, and transit

network will facilitate additional resiliency. These

improvements can be readily determined by analyzing the

traffic stress of streets and trips, thereby ensuring that a

lower-stress environment exists through enhancements

such as buffered bicycle lanes or better bus service. Such

future applications of this research can be utilized to con-

nect and improve bicycle, pedestrian, and transit networks,

further strengthening these environmentally friendly

transportation modes so that they may support the com-

munities that they serve.

Our work reveals that to build more resiliency into

communities and neighborhoods, policy makers and lead-

ers need to improve accessibility to low-stress alternatives

to driving, particularly in areas that possess lower-income

households and are further from the central business dis-

trict. Increasing the supply of affordable housing in closer

proximity to jobs is another possible solution. By better

supporting the more vulnerable neighborhoods, we are

supporting improved resiliency and strength of the com-

munity as a whole. These solutions will strengthen these

communities by offering adaptive and alternative trans-

portation choices, supporting the economic, social, and

environmental strength of cities and towns.
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