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Abstract System destabilization is a highly desirable

phenomenon during colloidal impurity removal from

sewages and wastewaters. Therefore, in this study, the

stability of chromium(III) oxide suspension in the absence

and presence of albumins [bovine serum albumin (BSA),

ovalbumin (OVA), human serum albumin (HSA)] was

investigated. Based on the analysis of experimental results,

i.e., measurements of adsorption amount, electrokinetic

potential, and metal oxide surface charge density as well as

system stability, the mechanism of the suspension stabili-

zation/destabilization was proposed. The examined system

without the albumins is relatively stable at pH 3, 4.6, and 9

(TSI = 34.8, 36.6, 34.22, respectively), which is associated

with the electrostatic stabilization phenomenon. In turn, the

least stable is the suspension at pH 7.6 (TSI = 55.43). This

is the result of the adsorbent zero surface charge.

Regardless of solution pH, the BSA, OVA, or HSA

adsorption causes an increase in the system stability

(17.55\TSI\ 30). Probably, the steric stabilization is

involved in this phenomenon, which results from the

mutual repulsion of the adsorption layers formed on the

solid surface. Thus, it can be concluded that the albumin

presence in the industrial wastewaters impedes the chro-

mium(III) oxide removal.

Keywords Albumin adsorption � Colloids � Electrostatic

and steric stabilization � Zeta potential

Introduction

Stable suspension is characterized by no macroscopic

processes, such as observable separation of suspended

particles and water. This means that even after a long time,

the particles sedimentation will not be observed. High

suspension stability is highly undesirable in wastewater

treatment, especially during colloidal impurity removal.

Then, settling tanks cannot effectively perform their task

(Nowicki 2005). The polymer addition often changes the

system stability. The most preferred phenomenon is the

suspension destabilization. Macromolecular compound

adsorption on colloidal particle surface changes the nature

of interactions between solid particles. The low suspension

stability is equivalent to the formation of large particle

aggregates which fall on the reservoir bottom (Wiśniewska

and Szewczuk-Karpisz 2013).

Contaminant removal from aqueous solutions is a

research subject of many scientists (Gupta et al. 2012a). Of

particular interest are methods for various dye removal,

i.e., chrysoidine Y (Mittal et al. 2010), amaranth (Mittal

et al. 2005; Gupta et al. 2012d), erythrosine (Gupta et al.

2006b), brilliant blue FCF (Gupta et al. 2006a), reactofix

golden yellow (Gupta et al. 2007d), reactofix red (Gupta

et al. 2007c), carmoisine A (Gupta et al. 2009b), blue 113

(Gupta et al. 2011c), metanil yellow (Mittal et al. 2008),

safranin T (Gupta et al. 2007b), crystal violet (Gupta et al.

2010a), phenol red (Gupta et al. 2009a), and triaryl meth-

ane (Gupta et al. 2010b). Waste (Gupta et al. 2007a; Jain

et al. 2004, 2003), activated carbon (Gupta et al. 1998;

Karthikeyan et al. 2012), carbon nanotubes (Gupta et al.

2011a, b), and specific columns (Gupta et al. 2012b) are

used in many technologies.

In this paper, the influence of biopolymers, such as al-

bumins: bovine serum albumin (BSA), ovalbumin (OVA),
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and human serum albumin (HSA), on the stability of the

chromium(III) oxide suspension was examined. Cr2O3 was

used in the experiments because of its wide industry

application. This is a dark green, amphoteric, sparingly

water-soluble solid, as well as the most stable green dye

used in glass and ceramic industries, construction, painting,

etc. (Barnhart 1997; Gattens and Stout 1966; Patnaik

2002). In recent years, Cr2O3 is tested for the catalytic

properties (Kantserova et al. 2009) as well as its ability to

increase the collagen stability (Sangeetha et al. 2012). Due

to the adverse effects of chromium(III) oxide on organisms

in aquatic ecosystems, the search for effective methods of

its removal from aqueous solutions is fully justified. Cr2O3

contributes to reducing the efficiency of photosynthesis and

thus other vital processes occurring in water (Świderska-

Bró _z 1993). Several methods of chromium and other metal

removal from aqueous solutions have been described in the

literature (Gupta et al. 2010c, 2012c; Gupta and Sharma

2003; Saleh et al. 2011; Gupta and Rastogi 2009).

Albumins were selected for the study due to their

important functions in organisms and wide use in many

scientific areas. Bovine serum albumin is a protein com-

posed of 583 amino acids, obtained on a large scale from

cow blood. BSA is used in molecular biology and bio-

technology as a stabilizing agent in buffers, protein for a

standard curve as well as nutrient in cell cultures. The

described protein does not possess enzymatic properties

(Yamane et al. 1975; Wright and Thompson 1975). Oval-

bumin is the main protein component of egg yolk. It con-

sists of 385 amino acids. Due to its high availability, OVA

is used in the studies of protein structure and properties as

well as in immunology as a factor stimulating allergic

reaction (Huntington and Stein 2001; Baynes and

Dominiczak 2005). Human serum albumin is the predom-

inant protein in human serum, consisting of 585 amino

acids. It is produced in the kidney and performs an

important function in the human body, inter alia, it main-

tains the osmotic pressure on a constant level and is

involved in the transport of hormones, fatty acids, and

drugs. Because of remarkable HSA role and its wide use in

clinical cases, the method of HSA synthetic equivalent

preparation is being developed (Karlsson et al. 2010;

Roche et al. 2008). Perhaps, the results presented in this

study could be helpful in achieving the above objective.

As it was mentioned above, in this paper, the stability

mechanism of chromium(III) oxide suspension in the

absence and presence of albumins was proposed. The main

aim of the study was to determine whether the selected

biopolymers cause suitable changes in the Cr2O3 suspen-

sion stability. The research team wanted to test whether the

albumin presence helps or hinders the metal oxide removal

from aqueous solutions. The studies on efficient removal of

colorful contaminants from water and wastewater are

particularly important because of the constant population

problem with access to drinking water. Thus, the stability

mechanism of the Cr2O3 suspension in the presence of

various polymers, i.e., ionic polyamino acids (Ostolska and

Wiśniewska 2014), Sinorhizobium meliloti 1021 exopoly-

saccharide (Szewczuk-Karpisz et al. 2014), and polyacrylic

acid (Wiśniewska and Szewczuk-Karpisz 2013), has been

investigated.

It should be also noted that the examination of metal

oxide suspension stability in the protein presence can cer-

tainly be regarded as innovative. There are few studies on

this subject in the literature. Wells et al. (2011) described

the stability of iron(III) and zinc oxide nanoparticle sus-

pensions in the serum protein presence, and Szekeres et al.

(2013) determined the modified magnetite suspension sta-

bility. However, their main purpose was to check the

possibility of medical applications. Moreover, the method

used for stability measurements of the Cr2O3 and Cr2O3–

albumin systems is very modern. The calculated Turbiscan

Stability Index (TSI) parameter accurately determines the

suspension stability.

Materials and methods

Experiments design and sampling preparation

Chromium(III) oxide (POCh) of the specific surface area

equal to 7.12 m2/g was used as the adsorbent in the

experiments (Table 1). The metal oxide-specific surface

area as well as average pore diameter was determined

based on the analysis of nitrogen adsorption–desorption

isotherms (BET method). The average size of the Cr2O3

particles was measured using a Zetasizer (Szewczuk-Kar-

pisz and Wiśniewska 2014). The adsorbent was washed out

from inorganic ions using redistilled water to the conduc-

tivity \3 mS/cm. Then, it was dried and crushed in a

porcelain crucible.

Bovine serum albumin (BSA), ovalbumin (OVA), and

human serum albumin (HSA) (Sigma-Aldrich) were used

in the experiments as adsorbates (Table 2). As reported in

the literature, the BSA molecular weight is 66.43 kDa

(Hirayama et al. 1990) and its isoelectric point (pI) is in the

range 4.7–4.9 (Dawson et al. 1993; Malamud and Drysdale

1978). In turn, the HSA molecular weight is 66.248 (Put-

nam 1975) or 66.437 kDa (Meloun et al. 1975), and its

isoelectric point is equal to 4.7 (Putnam 1975). Due to high

amino acid sequence similarity (76 %), bovine serum

albumin and human serum albumin are considered as

homologues. BSA and HSA molecules are approximately

heart-shaped in the pH range 4–8 (Carter and Ho 1994).

Ovalbumin is a protein with the mass of 42.7 kDa (Nisbet

et al. 1981) and the isoelectric point in the range 4.43–4.9
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(Beeley et al. 1972; Kidwai et al. 1976). Due to the OVA

amino acid sequence and spatial structure, it was classified

as serpin (Gettins 2002).

The chromium(III) oxide suspensions for stability

measurements were prepared by adding 0.02 g of the

adsorbent to 20 ml of electrolyte solution (0.01 M NaCl).

On the other hand, suspensions containing adsorbates were

prepared by adding the identical portion of the solid to the

solution containing 0.01 M NaCl. After albumin addition

(100 ppm) and adjusting the suspension pH (3, 4.6, 7.6 or

9), the examined system was transferred to a glass vial and

the measurement was started in a constant temperature

chamber (25 �C).

The samples for zeta potential measurements were

prepared by adding 0.03 g of the solid to 500 ml of 0.01 M

NaCl solution. Suspensions containing biopolymers were

prepared by the addition of identical metal oxide portion to

the solution containing 0.01 M NaCl and 10, 50, 100, 300,

or 500 ppm of albumin. After 3-min sonication, the sam-

ples were poured into five Erlenmeyer flasks and their pH

values (3, 4.6, 6, 7.6 and 9 ± 0.05) were adjusted using

0.01 M HCl and 0.01 M NaOH. The measurement system

was washed twice with distilled water before each

measurement.

Analytical methods

Stability measurements of the chromium(III) oxide sus-

pension in the absence and presence of albumin were

performed by using a turbidimeter Turbiscan LabExpert with

the cooling module TLAb Cooler. The results were

obtained as the curves of transmission and backscattering

of light (k = 880 nm) passing through the sample and the

TSI values. A single stability measurement lasted 3 h,

during which relevant data were recorded every 5 min. The

TSI value was calculated by the computer software work-

ing with the turbidimeter on the basis of the following

formula:

TSI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðxi � xBSÞ2

n� 1

s

ð1Þ

where xi average backscatter for every minute of mea-

surement, xBS average xi, n number of scans.

The electrokinetic potential of the chromium(III) oxide

particles in the absence and presence of albumin was

measured by a zetameter Zetasizer 3000 from Malvern

Instruments. The above apparatus determines the zeta

potential of colloidal particles moving in electric field on

the steady level of electrophoretic cell. The potential

reading is made automatically when the particle movement

is compensated for by the applied voltage. According to

Smoluchowski, the speed (u) of the colloidal particles

moving in the electric field is associated to the zeta

potential (f) by the equation:

f ¼ au
DF

g ð2Þ

where a factor depending on the particle shape (for

spherical particles a = 6p for cylindrical a = 4p);

D dielectric constant; F electric field strength; g viscosity.

Statistical analysis

One result of zeta potential was the average of five mea-

surements. The measurement error was calculated as the

standard deviation. The obtained values did not exceed

5 %.

Results and discussion

Stability of the chromium(III) oxide suspension

in the absence and presence of albumin

The stability of the chromium(III) oxide suspension in the

absence and presence of albumin was measured using a

turbidimeter. The results were obtained in the form of the

curves of transmission and backscattering of light beam

Table 1 Chromium(III) oxide parameters

Adsorbent SBET (m2/g) D (nm) Dp (Å
´

)

Chromium(III) oxide Cr2O3 7.12 265 93.25

SBET specific surface area, D average particle size, Dp average pore diameter

Table 2 Albumin characteristics

Adsorbates M (kDa) pI

Bovine serum albumin (BSA) 66.43 4.7–4.9

Human serum albumin (HSA) 66.248 or 66.437 4.7

Ovalbumin (OVA) 42.7 4.43–4.9
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passing through the sample as well as the TSI values. The

graphs for the Cr2O3 and Cr2O3–BSA systems at pH 3 and

7.6 are shown in Figs. 1 and 2. The results obtained for

OVA and HSA are not presented because they are very

similar to those for BSA. The TSI values are summarized

in Table 3.

Based on the obtained results, it was stated that the

Cr2O3 suspension stability depends on the solution pH

(Ostolska and Wiśniewska 2014; Wiśniewska and Szewc-

zuk-Karpisz 2013). Thus, among the examined systems,

the metal oxide suspension is characterized by the highest

stability at pH 3 and 9. This is evidenced by the relatively

low TSI values (34.8 and 34.22, respectively) and also low,

in comparison with other systems, transmission level of

light (in both cases approximately 25 % in the last minutes

of the measurement). At pH 4.6, the system is slightly less

stable than at pH 3 and 9 (TSI = 36.6). On the other hand,

the Cr2O3 suspension has the lowest stability at pH 7.6. The

proof is the high TSI value (55.43) and high transmission

level (52 % in the last minutes of measurement). The

presented results correspond to the data published by Os-

tolska and Wiśniewska (2014). Moreover, they are similar

to those obtained during the stability examination of Cr2O3

suspension in the PAA presence (Wiśniewska and Szewc-

zuk-Karpisz 2013).

The albumin addition, regardless of its type and solution

pH, increases the chromium(III) oxide suspension stability.

This phenomenon is equivalent to the drop in the TSI value

(for example, for BSA at pH 3–25.9), the backscatter level

increase (for BSA at pH 3 from 10 to 18 % in the last

minutes of the measurement) and the decrease in trans-

mission level (for BSA at pH 3 from 25 to 12 % in the last

minutes of the measurement). A similar serum protein

effect was observed during the study of inorganic com-

pounds, i.e., TiO2 (Allouni et al. 2009; Meißner et al. 2009;

Vamanu et al. 2008), Fe2O3 and ZnO (Wells et al. 2011),

WC (Meißner et al. 2009), and fullerene (Deguchi et al.

2007). On the other hand, Flynn et al. (2012) claimed that

Fig. 1 Transmission and

backscatter curves for the

chromium(III) oxide

suspensions as a function of

solution pH: a pH 3, b pH 7.6.

CNaCl = 0.01 M
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BSA presence slightly reduces electrostatic repulsion

between colloid particles, which is equivalent to a slight

stability decrease.

Electrokinetic potential of the chromium(III) oxide

particles in the absence and presence of albumin

The electrokinetic potential (f) of the chromium(III) oxide

particles was measured in the absence and presence of

albumin. The obtained values are shown in Figs. 3 and 4.

The graphs for OVA and HSA are not presented due to a

high similarity to the BSA one.

The result analysis showed that the isoelectric point

(pHiep) of chromium(III) oxide is approximately six. At

pH values above this value, negatively charged groups

dominate in the slip plane of the metal oxide, whereas

below this value—positively charged groups. The albumin

presence, regardless of its type and concentration, shifts

the Cr2O3 pHiep point to a more acidic value, i.e., about

five, which corresponds to the adsorbate isoelectric point.

Thus, it can be assumed that at specific albumin concen-

trations (10–500 ppm), the Cr2O3 particles are completely

covered with the albumin macromolecules and the adsor-

bent surface charge is totally masked. Then, the adsorbed

biopolymer macromolecules give the Cr2O3 surface such

chemical properties which are characteristic of the albu-

min. The described albumin adsorption influence on the

metal oxide pHiep value correspond to the data published

by Rezwan et al. (2004, 2005) working on BSA and

Fig. 2 Transmission and

backscatter curves for the

systems: a Cr2O3–BSA at pH 3,

b Cr2O3–BSA at pH 7.6.

CBSA = 100 ppm,

CNaCl = 0.01 M

Table 3 Turbiscan Stability Index (TSI) values for chromium(III)

oxide suspension in the absence and presence of albumins (100 ppm)

calculated on the basis of data obtained at 15 h using Eq. (1)

System Turbiscan Stability Index (TSI)

pH 3 pH 4.6 pH 7.6 pH 9

Cr2O3 34.8 36.6 55.43 34.22

BSA–Cr2O3 25.91 24.55 18.82 17.55

OVA–Cr2O3 30.0 25.27 22.11 17.56

HSA–Cr2O3 19.8 24.09 14.33 18.82
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lysozyme. Moreover, Hindber et al. (1996) observed that

also the adsorption of a small molecule, i.e., citric acid,

shifts the alumina pHiep point to the pK value of citric

acid.

The albumin adsorption amount on the Cr2O3 surface

was measured on the basis of differences in the protein

concentration in solution before and after the process

(Szewczuk-Karpisz and Wiśniewska 2014). The results

are shown in Fig. 5. Their analysis showed that the

adsorption amount varies with the solution pH. This is

associated with the conformation changes of the bio-

polymer macromolecules. At the isoelectric point, albu-

mins have the most compact coil structure (in the case of

BSA the a-helix content is equal to 55 % Foster 1977),

which enables the adsorption of the largest macromole-

cule number on the unit adsorbent surface. Moving away

from the pI value is equivalent to gradual expansion of

their conformation. At pH 3, macromolecules adopt the

most expanded structure (for BSA the a-helix content is

about 35 % Foster 1977), which contributes to the lowest

adsorption level under these conditions. However, the

obtained electrokinetic potential values showed that

despite the differences in the albumin conformation at

different solution pH values, in each test case, the

adsorbent surface is completely covered with the albumin

macromolecules. This is evidenced by the Cr2O3 pHiep

value in the albumin presence which is close to the pI

value of pure adsorbates.

The analysis of the zeta potential values also showed

that the albumin adsorption on the metal oxide surface

reduces the solid particle zeta potential in the whole pH

range. In the interpretation of electrokinetic properties of

the synthetic polymer/metal oxide system, this decrease

is explained by the slipping plane offset by the adsorbed

macromolecules (Wiśniewska and Szewczuk-Karpisz

2013). Perhaps, the adsorption of the biopolymer mac-

romolecules, such as albumin, is also related to a similar

phenomenon. Furthermore, the dissociated functional

carboxylic groups derived from acidic amino acids

present in the albumin macromolecules may be respon-

sible for the electrokinetic potential reduction. They are

mainly located in the parts that do not directly interact

with the solid surface. Charge distribution in the BSA

and HSA macromolecules was presented by Rezwan

et al. (2004).

It should be also noted that the reduction of the Cr2O3

electrokinetic potential is very similar for the three studied

albumins (BSA, OVA and HSA) (Fig. 4). This is probably

associated with similar properties of the adsorbates,

including their acidic nature and approximated values of

the isoelectric point.

Stabilization/destabilization mechanism

of the chromium(III) oxide suspension in the absence

and presence of albumin

Knowledge of the albumin adsorption amount on the

chromium(III) oxide surface, the stability, and electroki-

netic properties of the examined systems makes determi-

nation of the probable stability mechanism of the Cr2O3

suspension in the absence and presence of albumin

possible.

Thus, the chromium(III) oxide suspension without

albumin is the most stable at pH 3 and 9, which corre-

spond to the results obtained by Ostolska and Wiśniewska

(2014). This is mainly due to the electrostatic repulsion

occurring between the solid particles, which are sur-

rounded by the ions of the supporting electrolyte (NaCl)

charged oppositely to the solid surface. The previous

measurements of the surface charge density of chro-

mium(III) oxide carried out using the potentiometric

titration method showed that the pHpzc (the point of zero

charge) of the metal oxide is about 7.6 (Szewczuk-Kar-

pisz and Wiśniewska 2014). Thus, at pH 3, the solid

particles are positively charged and the sheath around

them is formed by chloride ions. In contrast, at pH 9, the
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Fig. 3 Electrokinetic potential of the Cr2O3 particles in the absence

and presence of BSA. The results for OVA and HSA were similar
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Fig. 4 Electrokinetic potential of the Cr2O3 particles in the absence

and presence of albumins with the concentration of 100 ppm
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Cr2O3 particles are negative and the sheath around them

is made by sodium ions. The observed values of the solid

electrokinetic potential at pH 3 and 9 (40 and -22 mV,

respectively) are the result of this phenomena. Smaller

stability of the system at pH 4.6 as compared to pH 3 is

associated with the smaller zeta potential value of the

metal oxide (about 20 mV) and thus with the weaker

electrostatic repulsion between the particles. Thus, it can

be concluded that the relatively high stability of the

suspension at pH 3, 4.6, and 9 is related with the elec-

trostatic stabilization phenomenon, which limits the par-

ticle collision and the formation of solid aggregates.

The chromium(III) oxide suspension without albumin is

the least stable at pH 7.6. The low stability of the system

under these conditions is primarily due to the zero surface

charge of the metal oxide, and thus, no electrostatic

repulsion between the particles is found.

The albumin addition, regardless of their type and

solution pH, increases the Cr2O3 suspension stability.

Biopolymer macromolecules adsorb onto the metal oxide

surface in each test solution pH, the greatest amount

adsorbed at pH 4.6 (a value close to the isoelectric point

of the adsorbate) and the lowest at pH 3. The increase in

the suspension stability in the albumin presence is evi-

denced by both the TSI values and the increase in

backscatter and the decrease in transmission of light

passing through the examined systems. During the ana-

lysis of the obtained adsorption amount and the Cr2O3

zeta potential values, it was found that in the whole pH

range, the solid particle surface is completely covered

with the biopolymer macromolecules. Thus, the most

likely mechanism of stabilization suspension, which

contributes to increase in stability of the tested systems, is

the steric stabilization (Kraynov and Muller 2011). It is

due to the mutual repulsion of the adsorption layers

formed on the solid surface. Increase in the Cr2O3 sus-

pension stability in the albumin presence is equivalent to

even more difficult formation of solid particle aggregates,

which is highly undesirable in the procedure of waste-

waters treatment.

The proposed mechanism of the chromium(III) oxide

suspension stabilization in the albumin presence is shown
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Fig. 5 The albumin amount adsorbed on the Cr2O3 particles as a

function of solution pH: a BSA, b OVA, c HSA. Calbumin

(initial) = 250 ppm

Fig. 6 Stabilization mechanism of the Cr2O3 suspension by albumins
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schematically in Fig. 6 (for BSA at pH 7.6 using the model

developed by Rezwan et al. 2004).

Conclusion

The pooled result analysis allowed to draw the following

conclusions: (1) the isoelectric point (pHiep) of chro-

mium(III) oxide is about 6, (2) the albumin presence,

regardless of their type, in the concentration range of

10–500 ppm, shifts the Cr2O3 pHiep point to 5, (3) the

isoelectric point of chromium(III) oxide in the albumin

presence is close to the isoelectric points of the pure

adsorbates, which shows that the adsorbent surface is fully

coated with the biopolymer macromolecules, (4) the Cr2O3

suspension is relatively stable at pH 3, 4.6, and 9, which is

connected with the electrostatic stabilization phenomenon,

(5) the metal oxide suspension is the least stable at pH 7.6,

which is associated with the adsorbent zero surface charge,

and (6) the albumin presence causes the increase in the

Cr2O3 suspension stability in the whole pH range, which is

connected with the steric stabilization phenomenon.

Thus, the presence of albumin in the industrial waste-

waters is highly undesirable as it hinders the removal of

chromium(III) oxide and probably other particles of col-

loidal dimensions.
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