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Abstract Interactions of iron (Fe) with the nitrogen

(N) cycle have emerged and contain elements of abiotic and

biological reactions. One such abiotic reaction which has

received little study is the reactivity of NO2
- and Fe(II)

associated with a major clay mineral, kaolinite. The main

objective of this study was to evaluate the reactivity of NO2
-

with Fe(II) added to kaolinite under anoxic conditions. Stir-

red batch reactivity experiments were carried out with

10 g L-1 kaolinite spiked with 25 and 100 lM Fe(II) at pH

6.45 in an anaerobic chamber. Approximately 500 lMNO2
-

was added to initiate the reaction with Fe(II)-loaded kaolin-

ite. The rate of nitrite removal from solution was 2.4-fold

slower in the high Fe(II) treatment when compared with the

low Fe(II) treatment. A large portion of the NO2
- removed

from solution was confirmed to be reduced to N2O(g) in the

Fe(II)-kaolinite slurries. However, NO2
- reduction was also

noticed in the presence of kaolinite-alone and to somewhat

lesser extent in the presence of dithionite-citrate-bicarbonate

(DCB)-treated kaolinite. Chemical extractions coupled with

infrared spectroscopy suggest that Fe(III) oxide mineral

impurities and structural Fe(III) in kaolinite may participate

in NO2
- removal from solution. Furthermore, a magnetite

mineral was identified based on X-ray diffraction analysis of

untreated kaolinite and DCB-treated kaolinite. Our findings

reveal a novel pathway of NO2
- transformation in the

environment in the presence of Fe(II) associated (sorbed and

impurity) with kaolinite.
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Introduction

Nitrite (NO2
-) is a soil anion that occurs as an intermediate

in biological denitrification and nitrification. Incomplete

NO3
- reduction can cause NO2

- accumulation in soils,

sediments, and groundwater (Vaclavkova et al. 2015;

Matocha et al. 2012). The presence of NO2
- can impact

dissolved organic nitrogen production, uranium bioremedi-

ation, pyrite oxidation, and Fe(III) reduction (Obuekwe et al.

1981; Senko et al. 2002; Davidson et al. 2003; Picardal 2012,

Yan et al. 2015). Regarding the latter process, several Fe(III)-

reducing bacteria can simultaneously reduce NO3
- and

Fe(III) (DiChristina 1992; Krause and Nealson 1997). The

biologically produced Fe(II) and NO2
- can react chemically,

producing Fe(III) and N2O (Moraghan and Buresh 1977).

This chemical process has been invoked to explain the

apparent inhibition of Fe(III) reduction in the presence of

NO3
- in pure cultures (Obuekwe et al. 1981) and anoxic soil

slurries (Komatsu et al. 1978; Matocha and Coyne 2007).

Cleemput and Baert (1983) showed that this reaction was

more rapid as pH decreased. This may be attributed to the

greater proportion of protonated nitrite species (HNO2).

Protonation promotes N–O bond breaking; thus, HNO2 is a

stronger oxidant than NO2
- (Shriver et al. 1994).

The production of nitrous oxide (N2O) in the Don Juan

Pond in Antarctica was attributed to abiotic processes
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involving oxidation of mineral-derived Fe(II) coupled to

NO2
- reduction (Samarkin et al. 2010). In fact, many

researchers previously studied and reported abiotic reduc-

tion of NO2
- by Fe(II) species such as Fe(II) minerals and

sorbed Fe(II) on the mineral surfaces in laboratory studies

(Sorensen and Thorling 1991; Hansen et al. 1994; Rakshit

et al. 2008; Tai and Dempsey 2009; Dhakal et al. 2013).

Solid Fe(II) minerals and sorbed Fe(II) species are more

effective reductants than dissolved, hexaquo-Fe(II)

(Fe(H2O)6
2?) species (Wehrli 1990; Stumm and Sulzberger

1992; Luther et al. 1992; Neumann et al. 2009; Klueglein

et al. 2015).

Reductive dissolution of Fe(III) (hydr)oxides by dis-

similatory iron-reducing bacteria is an important process in

biogeochemical iron cycling (Liu et al. 2001). Most of the

Fe(II) produced during microbial Fe(III) reduction exists in

precipitated or sorbed forms (Frederickson et al. 1998;

Zachara et al. 2002). Regarding the latter, surface oxo- and

hydroxo- ligands bonded to Fe(II) increase, the electron

density at the Fe(II) center (Millero 1985; Stumm and

Morgan 1996) thereby enhancing the potential of Fe(II) as a

reductant of NO2
-. Sorensen and Thorling (1991) found

that Fe(II) adsorbed to lepidocrocite (c-FeOOH) reduced

NO2
- at a faster rate than dissolved Fe(II). However, there

is very little information available about the reactivity of

NO2
- with Fe(II) sorbed to soil clay minerals such as

kaolinite. Kaolinite has edge sites containing [Al–OH

(aluminol) and[Si–OH (silanol) groups that can demon-

strate pH-dependent surface charge and can adsorb metal

cations such as Fe(II). In fact, Kukkadapu et al. (2001)

reported that in Fe(III) oxide-rich subsoils with mixed

mineralogy, dissolved biogenic Fe(II) adsorbed strongly to

kaolinite. Other researchers also found there is close asso-

ciation between kaolinite and Fe(III) minerals in certain soil

types (Jefferson et al. 1975; Golden and Dixon 1985).

Most studies evaluating the reactivity of adsorbed

Fe(II)-kaolinite complexes use reference kaolinite minerals

to mimic soil kaolinite. Georgia kaolinite (KGa-1b) is one

of the most common reference kaolinite minerals used in

research studies (Zachara et al. 1998; Foster et al. 1998).

Accordingly, the objective of this study was to evaluate the

reactivity of Fe(II) associated with kaolinite with NO2
-.

Materials and methods

Materials

Georgia kaolinite (KGa-1b, Clay Minerals Repository,

University of Missouri) was purchased and used in this

study. The kaolinite was sieved to less than 45 lm fraction

size. Freshly prepared, acidified 0.1 M FeCl2, 4H2O stock

solutions were used for preparing sorbed Fe(II)-kaolinite

complexes. The source of NO2
- was derived from NaNO2

salt, and NO2
- reactivity studies were performed in an Ar/

H2 purged anaerobic chamber (Coy Laboratory Products,

Grass Lake, Michigan) (Klausen et al. 1995). The organic

buffer MES [2-(N-morpholino) ethane sulfonic acid] with

concentration of 0.3 M was added to control the pH

(Alowitz and Scherer 2002). The MES buffer was titrated

either with 1 M NaOH or with 1 M HCl to attain desired

initial pH values for the NO2
- reactivity studies (pH 6.45

MES). The ferrozine [3-(2-pyridyl)-5, 6 bis(4-phenylsulfonic

acid)-1, 2, 4-triazine, monosodium salt] reagent was used to

complex the dissolved Fe(II) present in the aliquots (Stookey

1970). All the solutions were made anoxic by purging with

Ar for 2.5 h and stored in an anaerobic glove box.

Preparation of mineral suspensions

All the studies, until otherwise specified, were conducted in

an anaerobic glove box (Coy Laboratory Products, Grass

Lake, MI). For each experiment, 10 g L-1 KGa-1b was

preequilibrated for 24 h with MES buffer at the desired pH.

Mineral suspensions were made by adding calculated

amounts of 0.1 M FeCl2 stock into 10 g L-1 KGa-1b, and

the suspension was mixed with a rotator stirrer for 72 h.

Suspensions were removed and filtered with 0.2-lm
membrane filter paper (Fisher Scientific, Hampton, NH),

and the aliquots were complexed with ferrozine reagent to

measure the Fe(II) concentrations colorimetrically with a

UV–VIS-NIR scanning spectrophotometer (Shimadzu,

UV-3101 PC, Columbia, MD) at 562 nm wavelength. The

initial added Fe(II) concentrations were 25 and 100 lM.

These concentrations were chosen to mimic real environ-

mental conditions. These Fe(II) levels were referred to as

high Fe and low Fe, respectively. Kinetic experiments

showed that almost all of added Fe(II) (approximately

[98 %) was removed from solution by kaolinite within

72 h of reaction time (Fig. 1).

A portion of KGa-1b was chemically treated to remove

well and poorly crystalline Fe(III) (hydr)oxides using the

DCB (dithionite-citrate-bicarbonate) extraction method

(Mehra and Jackson 1960). Untreated and DCB-treated

kaolinite samples were characterized by X-ray diffraction.

Additional extractions were conducted using 0.5 and 6 M

HCl to determine Fe(II) and Fe(III). Approximately 30 mg

of untreated kaolinite was homogenized with 300 mg of

spectroscopic grade KBr and analyzed using a Nicolet 6700

Fourier Transform Infrared (FTIR) spectrometer equipped

with a Thermo Fisher Smart Collector Diffuse Reflectance

accessory. The FTIR spectra were collected over a range of

4000–600 cm-1 with continuous nitrogen purge. Two

hundred scans were co-added together at a spectral resolu-

tion of 4 cm-1. Baseline corrections and further spectra

processing were performed using GRAMS/32.
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Nitrite reactivity experiments

Nitrite reactivity experiments were carried out using both

untreated and DCB-treated kaolinite at a suspension density

of 10 g L-1. Stirred batch reactivity experiments were

conducted with duplicate 30-mL glass vials at a pH value of

6.45 in the high-Fe and low-Fe treatments by addition of

500 lM NO2
-. To identify the effect of Fe impurities in

KGa-1b, experiments were included where Fe(II) was not

added (control) and where NO2
- was added to KGa-1b and

reacted outside the glove box (labeled oxic). DCB-treated

kaolinite was reacted with NO2
- under anaerobic conditions

without added Fe(II) (labeled DCB) to identify the effect of

Fe impurities on NO2
- reduction. A blank experiment with

no kaolinite (labeled blank) was included. The suspensions

were filtered at predetermined time intervals using 0.2-lm
filter paper and the filtrate was measured for NO2

- con-

centration with a Metrohm 792 Basic ion chromatograph

(Herisau, Switzerland). In separate experiments, N2O(g) was

measured in the head space of capped 30-mL glass vials

using a Varian 3700 gas chromatograph with 2 M packed

column, porapak Q, with TCD detector and 20 mL min-1

He carrier gas. The portion of N2O (g) dissolved in solution

was accounted for using Henry’s Law constant.

Results and discussion

NO2
2 reduction by Fe(II) associated with kaolinite

The rates of nitrite removal from solution in the various

treatments are shown in Fig. 2. Negligible removal of nitrite

occurred in blank experiments in which no kaolinite was

added (nitrite-alone). The rate of nitrite removal, based on the

initial linear fit of concentration versus time curves, was

*2.4 times slower for the high Fe(II) treatment when com-

pared with the low Fe(II) treatment (Fig. 2). These results

differed from the findings of other researchers who studied

reactivity of sorbed Fe(II) with contaminants, where

increased Fe(II) loading resulted in greater contaminant

reduction rates (Klausen et al. 1995; Amonette et al. 2000).

One possible reason for this phenomena could be surface

oxidation of sorbed Fe(II) at the high Fe(II) treatment when

preparing mineral suspensions. Recent studies by Soltermann

et al. (2014) indicate that sorbed Fe(II) on edge sites of

montmorillonite can be readily oxidized to secondary Fe(III)

oxide minerals. Our kaolinite slurries would supply ample

edge sites which might sorb and subsequently oxidize added

Fe(II). If oxidized Fe(III) precipitates are forming on

kaolinite, they might serve to passivate the surface,

decreasing the rate of nitrite removal in the high Fe(II)

treatment when compared with the low Fe(II) counterpart.

Nitrite removal from solution by kaolinite and Fe(II)-

treated kaolinite slurries can involve both sorption and

electron transfer processes. Nitrous oxide (N2O(g)) was

identified as a two-electron reduction product and accoun-

ted for approximately 20–80 % of the NO2
- removed from

solution in the Fe(II)-reacted kaolinite treatments (Fig. 3).

Ammonium (NH4
?) was below detection limits. Thus, the

production of NO(g), N2(g), and/or sorbed nitrite might

account for unrecovered N.

The addition of Fe(II) was not necessary for nitrite

removal to occur based on disappearance of nitrite in

control slurries (kaolinite-alone) (Fig. 2). The pattern of

nitrite disappearance in the control was complex; nitrite

levels resembled high Fe(II) treatments at early time points

and low Fe(II) treatments at longer times ([24 h). It is

possible that Fe impurities in kaolinite were responsible for

NO2
- removal from solution.
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Fig. 1 Fe(II) sorption kinetics on 10 g L-1 KGa-1b. High Fe and low

Fe represent 100 and 25 lM initial spiked Fe(II). Fe(II) Ads in Y-axis

is indicating the amount of sorbed Fe(II) on KGa-1b surface Time (h)
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Fig. 2 Nitrite reduction with Fe(II) associated with Georgia kaoli-

nite. Kaolinite-alone and oxic represent reaction of NO2
- with KGa-

1b under anoxic and oxic conditions, respectively, without any sorbed

Fe on KGa-1b. DCB indicates reaction of NO2
- with DCB-treated

KGa-1b. Low Fe and high Fe represent reaction of 25 and 100 lM
sorbed Fe(II) on KGa-1b with NO2

-. Nitrite-alone indicates change

of NO2
- in solution in absence of any solid phase. All the conditions

are buffered by MES at pH = 6.45, and at a KGa-1b concentration of

10 g L-1
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Role of impurities in kaolinite

Chemical extractions were performed on kaolinite anoxic

slurries in order to identify the nature of potential impurities

which might be removing nitrite from solution without added

Fe(II). The 0.5 and 6 M HCl extractions conducted under

anoxic conditions indicated that Fe(II) and Fe(III) were

present in kaolinite (Table 1). There was a notable decrease

in 6 M HCl-extractable Fe(III) after DCB extraction. Fur-

thermore, both mineral acid extractions showed that Fe(II)

was present in greater amounts than Fe(III). It is possible that

discrete Fe(III) (hydr)oxide mineral impurities are present in

close association with kaolinite.

Some of the Fe(III) associated with kaolinite might also

exist as structural Fe(III) which has substituted for Al3?.

An infrared spectrum in the OH-stretching region of

untreated kaolinite show the OH-stretching bands at 3695,

3667, 3651, and 3618 cm-1, diagnostic of well-crystalline

kaolinite (Fig. 4). In addition, there is a weak shoulder near

3590 cm-1 which has been assigned by Beauvais and

Bertaux (2002) as Fe3? substituted for Al3? in KGa-1b.

Past studies have shown that trace impurities in this par-

ticular reference kaolinite (KGa-1b) can alter electron

transfer and sorption behavior of inorganic contaminants.

For example, it was shown that TiO2(s) impurities in ref-

erence kaolinite participated in As(III) oxidation to

As(V) (Foster et al. 1998). In addition, Zachara et al.

(1998) found that a DCB extraction affected the ability of

this reference kaolinite to sorb chromate (CrO4
2-).

To verify that Fe(II) associated with kaolinite was

responsible for NO2
- removal from solution, additional

experiments were performed by adding 500 lM NO2
- to

KGa-1b under oxic conditions and after treatment with

DCB under anoxic conditions at pH 6.45. It was found that

DCB-treated KGa-1b reduced NO2
- at a slower rate and

lower amount than that of the control (kaolinite-alone)

(Fig. 2). Moreover, untreated KGa-1b did not react with

NO2
- under oxic conditions, outside the glove box

(Fig. 2). These data provide further support that Fe(II)

impurities in kaolinite were responsible for NO2
- removal

from solution. Further experiments characterizing nitrous

oxide in control slurries would be useful to evaluate whe-

ther the nitrite removed from solution is sorbing or

undergoing electron transfer to form products.

The stoichiometric equivalence of Fe(II) available to

NO2
- reduced could not be obtained even after these

experiments. The Fe(II) values in kaolinite, as determined

from 0.5 to 6 M HCl extractions, were not high enough to

explain the amount of NO2
- reduced. From Table 1, one

can find that 6 M HCl extraction of KGa-1b resulted in

about 2 lmol of Fe(II) per g of KGa-1b. Converting that

amount to a value relevant to the experimental conditions

used here yields 20 lM Fe(II). The added 25 lM Fe(II)

can add to this value to make it 45 lM Fe(II). It is evident

that, if a 2:1 molar ratio of Fe(II) to NO2
- is considered,

this amount along with the added amount cannot explain

the amount of NO2
- lost in the case of low Fe treatment

(368 lM NO2
- lost). For DCB extracted and KGa-1b-

anoxic treatments, the amounts of NO2
- lost were 137 and

276 lM, respectively, and the amount of extractable total

Fe available to react were *32 and 20 lM, respectively.

One reason for the unaccounted molar equivalence of

NO2
- to Fe(II) may be that unextractable Fe (by 0.5

and 6 M HCl acid extractions) is present in KGa-1b.

Researchers found that only 1–2.5 % of the Fe present in

haematite (Fe2O3) and magnetite (Fe3O4) can be recovered

by 0.5 M HCl extraction (Kennedy et al. 1998). They

indicated one needs to use hot 12 M HCl extraction to

account for the Fe-fraction containing Fe3O4. It is possible

that even the 6 M HCl extraction could not recover all Fe

from KGa-1b. In fact, the X-ray diffraction data showed

weak peaks that correspond to magnetite, a mixed Fe(II)/

Fe(III) mineral with a chemical formula of Fe3O4 (Fig. 5a, b).

Hence, the unextractable Fe fraction coming from Fe3O4

may participate in NO2
- reduction, particularly if surface

Fe(II) is associated with magnetite (Dhakal et al. 2013). In
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Fig. 3 Amount of N2O (g) production in the reaction of NO2
- with

sorbed Fe(II) on KGa-1b at pH 6.45 in MES. Low Fe and high Fe

represent 25 and 100 lM sorbed Fe(II) on KGa-1b

Table 1 Chemical extractions

(0.5 and 6 M HCl) of untreated

and DCB-treated KGa-1b

Untreated KGa-1b DCB-treated KGa-1b

Fe-extraction Total Fe Fe(II) Fe(III) Total Fe Fe(II) Fe(III)

lmol g-1

0.5 M 0.76 ± 0.14 0.67 ± 0.08 0.09 ± 0.007 0.57 ± 0.03 0.47 ± 0.01 0.11 ± 0.04

6 M 3.21 ± 0.2 2 ± 0.09 1.2 ± 0.3 1.99 ± 0.4 1.78 ± 0.6 0.21 ± 0.08
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addition, the finding that DCB-treated KGa-1b actually

reacted with NO2
-, although at a slower rate (Fig. 2),

suggests an unextractable Fe fraction may be present and

participate in NO2
- reduction.

Environmental implications

Although the reactivity study of sorbed Fe(II) on KGa-1b

with NO2
- was confounded by the presence of Fe

impurities in KGa-1b, this phenomenon can mimic the real

environmental scenarios where complex mineral assem-

blages are present. This kind of environmental conditions is

speculated by many researchers in the light of contaminant

sorption processes (Bertsch and Seaman 1999). These

authors identified the need of considering surface modifi-

cations of soil clay minerals by Fe– and Al– oxides. It has

been well demonstrated that contaminant sorption process

was largely changed by these surface modifiers (Bertsch

and Seaman 1999). Our work demonstrates that the redox

behavior of soil clay mineral can largely be affected by

surface modifications as well. Therefore, our work can be

very relevant to the environments where kaolinite and Fe

associations may occur. In fact, there are numerous reports

of Fe(II) and Fe(III) association with kaolinite (Kukkadapu

et al. 2001; Jefferson et al. 1975; Golden and Dixon 1985).

This process may be limited to subsurface environments

where Fe(III)-reducing conditions prevail and oxygen is

absent. In addition to the real environmental applications,

our work is important because KGa-1b is one of the most

common reference kaolinite minerals used by researchers.

Conclusion

Our laboratory experiments indicate for the first time that

kaolinite supplemented with Fe(II) can remove nitrite from

solution. In the Fe(II)-kaolinite experiments, about 80 % of

the NO2
- was reduced to N2O as a product. Production of N2

(g), NO (g), or sorbed NO2
-may account for unrecovered N.

Our findings are confounded by the fact that impurities,

especially Fe(II) associated with KGa-1b, participated in

NO2
- reduction as well without added Fe(II). Chemical

extractions reveal the presence of Fe(II) and Fe(III) in

association with kaolinite which might occur as free Fe(III)

oxide minerals and/or structural Fe(III) substituted in kaoli-

nite. Evidence for the latter is supported by infrared spectra

which show an absorption band near 3590 cm-1. X-ray

diffraction results from pristine and DCB-treated KGa-1b

revealed the presence of mineral phases such as magnetite,

which in turn could account for greater amount of NO2
-

reduced than can be expected from theoretical stoichiometric

equivalence of Fe(II) added plus extracted. Our findings not

only mimic scenarios where Fe(II) kaolinite association

could occur, but also provide insights into research findings

that use KGa-1b as a reference kaolinite mineral.
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