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Abstract The objectives of this study were to investigate

fractionation, solubility and potential bioavailability of Pb,

As and Cs in Mississippi River Delta paddy soil under an

electrokinetic field (EKF). Effects of EKF on soil pH

changes and solid-phase distributions of metal(loid)s were

examined. Results showed that fractionation of Pb, As and

Cs was largely determined by the nature of elements,

loading levels and EKF treatment. Native Pb in the soil was

mostly in the amorphous iron oxide, organic matter and

residual fractions, native As in the amorphous iron oxide,

easily reducible oxide and residue fractions while native Cs

in the residue fraction. Added Pb, As and Cs showed dis-

tinguished solid-phase distributions: Pb dominantly in the

organic matter fraction; As in the amorphous iron oxide

fraction, and Cs in the residue with a significant water-

soluble plus exchangeable fraction. EKF treatment is

effective on lowering soil pH to 1.5 near the anode due to

water electrolysis releasing proton which is beneficial for

dissolution of metal(loid)s, increasing their overall solu-

bility. The acidification in the anode soil efficiently

increased the water-soluble Pb and the exchangeable Cs,

implying enhanced solubility and elevated their overall

potential bioavailability in the anode region while lower

solubility in the cathode area. The building up of water-

soluble As in the anode region may be from electromi-

gration of As anion from the cathode. This study shows

significant enhancement of redistribution, elevated solu-

bility and overall bioavailability of Pb, As and Cs in

Mississippi Delta paddy soil under the EKF.

Keywords Metal(loid) � Distribution � Mobility �
Bioavailability � Electrokinetic remediation

Introduction

Soil pollution with heavy metal(loid)s is an increasing

global concern due to their persistence, high toxicity and

potential carcinogenic characteristics (Davies 1980;

Kabata-Pendias 2000; Adriano 2001; Han et al. 2007).

Heavy metal(loid)s such as lead (Pb) and arsenic (As)

are mainly released to soils from anthropogenic activities

such as industrial, agricultural and mining activities

(Davies 1980; Kabata-Pendias 2000; Adriano 2001;

Cameselle et al. 2013). It was suggested that top soil

could be a permanent sink for anthropogenic Pb and As

compounds from the atmosphere or hydrosphere (Salazar

and Pignata 2014). Pb was largely released to the envi-

ronment due to coal burning dating from the industrial

revolution (Davies 1980; Kabata-Pendias 2000; Adriano

2001; Shotyk et al. 1997). The introduction and com-

bustion of leaded gasoline peaked the Pb emission to the

environment during the 1950s–1980s. It was reported

that the highest content of Pb was up to 209 mg kg-1 in

the top roadside soils (Banin et al. 1987). Arsenic is

primarily derived from sulfide mining (as As5? in most

minerals), tailings (both fully oxidizing tailing with As5?

adsorbed on Fe oxides and partially oxidizing tailings

with 20 % arsenopyrite, FeAsS and 80 % As5? scor-

odite, FeAsO4�2H2O), industrial activities such as elec-

tronic, fireworks ceramics and glass (Porter and Peterson
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1977; Foster et al. 1998). During the twentieth century,

widespread soil pollution with As has been resulted from

indiscriminate use of pesticides, herbicides, desiccants

and fertilizers in agricultural activities (Mandal 2002).

Soils in contaminated sites have been detected with As

content as high as more than 1000 mg kg-1 (Smith et al.

1998).

On the other hand, as a radionuclide, cesium has been

released into soils through nuclear wastes, nuclear power

plant accidents, and nuclear weapon testing (Gian-

nakopoulou et al. 2007). 137Cs is a radionuclide of great

concern with a half-life of 30.2 years due to its high

bioavailability and chemical and biological similarity with

potassium, an essential element in living organisms. Cher-

nobyl accident released a huge amount of 137Cs and other

radionuclides into surrounding soils (Belarus, Ukraine and

Russia) and even spread through the entire Northern Hemi-

sphere (Gommers et al. 2005; Kashparov et al. 2005). Sim-

ilarly, radionuclides 134Cs and 137Cs) were released during

the FukushimaDaiichi nuclear power plant accident in 2011.

137Cs has heavily contaminated the soils in large areas of

eastern and northeastern Japan (Yasunari et al. 2011). The

soils around Fukushima and neighboring prefectures have

been extensively contaminated with depositions of 137Cs in

Japan Islands and the surrounding ocean (Yasunari et al.

2011). Radionuclides were reported to be also present and be

transported in colloids of groundwater of nuclear ground

detonation sites such as the Nevada Test Site (Kersting et al.

1999; Yasunari et al. 2011).

Some current practices for remediating heavy metal(-

loid)-contaminated soils relies on ‘‘dig-and-dump’’ or

encapsulation, neither of which addresses the issue of soil

decontamination. Immobilization or extraction by

physicochemical techniques may be expensive and are

often appropriate only for small areas where rapid and

complete decontamination is required. Other remediation

methods, such as soil washing, have an adverse effect on

biological activity, soil structure and fertility in addition

to significant engineering costs (Pulford and Watson

2003). On the other hand, phytoremediation is an

emerging technology that uses various plants to degrade,

extract, contain or immobilize contaminants from soil and

water (Raskin and Ensley 2000). Phytoextraction is the

process of concentrating metals/metalloids in the stems

and leaves of accumulating plants (Raskin and Ensley

2000). The development of phytoremediation is being

driven primarily due to the high cost of other soil reme-

diation methods as well as the desire to use an environ-

mental benign process. Potential obstacles to a large-scale

application of phytoremediation technologies include the

time period required for remediation, pollutant levels

tolerated by plants and the relative low bioavailability of

contaminants.

The water-soluble and exchangeable fractions of

metal(loid)s, which are in equilibrium with the solid-

phase speciation, are the most bioavailable form to plants

(Han et al. 2007; Adriano 2001). The metals and metal-

loids are present in many solid-phase fractions including

exchangeable, carbonate bound, organic bound,

iron/manganese oxide bound etc. (Tessier et al. 1979; Han

et al. 2007; Han and Banin 1997, 1999; Han et al. 2006,

2008, Han et al. 2012). In order to improve the mobility

and bioavailability of heavy metal(loid) in soil, elec-

trokinetic field (EKF) was introduced to enhance phy-

toremediation efficiency of metal(loid) contaminated soils

(Cameselle et al. 2013). EKF involves using a direct or

alternating current with electrodes inserted into contami-

nated soils. When a low intensity electric field is applied,

H? is generated around the anode electrode through the

effect of water electrolysis. As a result, more metal(loid)s

are demobilized under the acid condition around the

anode electrode (Thangavel 2004). In addition, enhanced

mobilization processes occur in soils resulting in the

transport of metal(loid) ions from the anode to the cath-

ode electrode (Dermont et al. 2008). Electromigration and

electroosmosis are two main mechanisms for metal/met-

alloid transportation (Fig. 1). Water present in soil is able

to move toward the cathode through soil pores by elec-

troosmosis, while cations could move to the cathode

through electromigration (Cameselle and Reddy 2012).

The migration of ions makes it possible for the subse-

quent removal of soluble metal(loid)s or immobilization

with oxides, hydroxides and carbonates during the phy-

toremediation (Ottosen et al. 2007). However, the detailed

mechanisms of releasing/mobilization of metals/metal-

loids with EKF through transformation of metal/metal-

loids among various solid-phase components were not

clearly understood.

The objectives of this study were: (1) to investigate the

fractionation and distribution of Pb, As and Cs among

solid-phase components in Mississippi River Delta paddy

soil with different input levels, (2) to investigate changes of

soil pH influenced by EKF, (3) to determine the redistri-

bution/transformation processes of Pb, As and Cs in soils

under EKF from stable fractions into labile fractions, and

(4) to evaluate the solubility and overall potential

bioavailability of Pb, As and Cs under constant electrical

parameters of EKF such as electrical field intensity, mode

of voltage, operational time and the distance between the

anode and cathode electrodes.
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Materials and methods

Soil and experimental design

A surface paddy soil (0–15 cm) was sampled from the rice

field in the MS River Delta. All soil samples were air-dried

and ground to pass 2 mm sieve. Two replicates were set for

each treatment (Table 1). About 1 kg of air-dried soil was

weighed and placed into each plastic pot with 6 in.

(15.2 cm) diameter and 5.4 (13.7 cm) inch height. Chem-

ical grade lead nitrate (Pb(NO3)2), sodium arsenite

(NaAsO2) and cesium chloride (CsCl) were used as Pb, As

and Cs sources, respectively. Three content levels were

applied for each metal(loid). Pb treatments included the

control, 200, 600 and 1000 mg kg-1; As treatments were

control, 5, 20 and 100 mg kg-1; and Cs treatments

included the control, 5, 20 and 100 mg kg-1. The control

and the middle level treatments for each element were

selected for application of EKF: Pb (600 mg kg-1), As

(20 mg kg-1) and Cs (20 mg kg-1). Pb, As and Cs salts

were ground and mixed with air-dried soil to ensure the

homogeneity of mixing the salts with soil. Water moisture

was kept at field capacity throughout the incubation period.

EKR setup and determination of metal(loid)

speciation

A DC power supplier (0–60 V, 0–3 A) was used as an

electrical power source. Graphite electrode rods (0.95 cm

diameter, 30.5 cm length) were used as both anodes and

cathodes due to their low cost and inertness. A DC elec-

trical field with a constant intensity of 1 V cm-1 was

applied to soil in plastic pots with a medium concentration

level of Pb, As and Cs treatments, respectively. A pair of

graphite electrode rods was vertically inserted into both

sides of each pot with 13 cm below the soil surface. The

copper wire was used to connect the electrode rods with the

power source. The electrical equipments were set up after

5 weeks of equilibrium of elements added in soil. In order

to study the soil pH and metal(loid) distribution, mobility

and bioavailability, the direct current electrical field was

applied for 24 h a day. After 15 days of field EKF treat-

ment, surface soil samples (0–5 cm) were collected in the

Electroosmotic flow

Contaminated soil
Anode Cathode

Cations

Anions

Electroomosis of soil pore water

Electromigration of ions

Fig. 1 Diagram of electrokinetic remediation (EKR) of metal(loid) contaminated soils under electrokinetic field (EKF)

Table 1 Experimental design of metal(loid) treatments with and

without electrokinetic field (EKF)

Treatment Addition of heavy metal(loid)s (mg kg-1)

Pb As Cs

Without EKF 0 0 0

600 20 20

1000 100 100

With EKF 600 20 20
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anode, the middle and the cathode regions of each pot,

respectively. The speciation and solid-phase fractionation

of metal(loid)s influenced under EKR were examined.

Determination of soil pHs

About 10 g of soil sample was mixed with deionized water

at a soil/water ratio of 1:1. Stir the mixture vigorously and

allow the slurry to set for about 15 min. A pH meter was

used to measure the pH of the slurry after calibration using

pH 4, 7 and 10 buffer solutions. The electrode of the pH

meter was directly placed into soil slurry, and then pH was

read and recorded. Room temperature (20–25 �C) was

ensured throughout the pH measurement.

Metal(loid) fractionation and chemical analysis

Lead, arsenic and cesium were assumed to be presented in

seven operationally defined fractions (as water-soluble,

exchangeable, easily reducible oxide bound, organic matter

bound, amorphous iron oxide bound, crystalline iron oxide

bound and residual fractions) in soils and obtained with

selective sequential dissolution (SSD) which was devel-

oped based on sequential extraction procedure proposed by

Tessier et al. (1979) and Han and Banin (1997).

Water soluble (SOL)

1.2 g air-dried soil and 25 mL of 0.01 M CaCl2 were added

into a 50-mL Teflon centrifuge tube. The mixture were

shaken for 30 min at room temperature and then cen-

trifuged for 10 min at 6000 rpm. The supernatant was fil-

trated through a 0.45-lm filter and kept for the analysis.

The soil residue was kept in the Teflon tube for the next

extraction procedure. The same centrifugation operation

was applied in the following six extraction steps.

Exchangeable (EXC)

Soil residue from the water-soluble fraction was extracted

with 25 mL of 1 M neutral NH4NO3. The mixture was

shaken for 30 min at room temperature.

Easily reducible oxide bound (ERO)

Soil residue was mixed with 25 mL of 0.1 M NH2-

OH.HCL ? 0.01 M HCl and shaken for 30 min.

Organic matter bound (OM)

Soil residue was first mixed with 3 mL of 0.01 M HNO3

and 5 mL of 30 % H2O2. Then, after digestion in water

bath for 2 h at 80 �C, another 2 mL of 30 % H2O2 was

added. After 1 h heating, 15 mL of 1 M NH4NO3 was

added and the mixture was agitated for 10 min.

Amorphous iron oxide bound (AmoFe)

Soil residue was extracted with 25 mL of 0.2 M (NH4)2-
C2O4–H2C2O4, and the mixture was shaken for 4 h in the

dark environment.

Crystalline iron oxide bound (CryFe)

Soil residue was added with 25 mL of 0.04 M NH2OH�HCl
and 25 % CH3COOH. The mixture was then digested in

water bath for 3 h at 95 �C.

Residue (RES)

Soil residue was added with 25 mL of 4 M HNO3 and

digested in water bath for 16 h at 80 �C.
Supernatants collected after centrifugation were filtrated

through 0.45 mm filter and further diluted for 20 folds. Pb,

As and Cs concentrations in supernatants were determined

with inductively coupled plasma mass spectrometry (ICP-

MS).

Statistical analysis

The data were processed and the average and the standard

deviations were calculated with Microsoft Excel. SPSS

11.5 software was used for statistical analyses. Duncan’s

multiple range tests were applied for significant analysis of

pH changes and metal(loid) speciation under EKF

(P\ 0.05).

Results and discussion

Distribution of Pb, As and Cs in soils with various

loading levels

The distribution of Pb, As and Cs among various solid-

phase fractions in soils depended upon the nature of ele-

ments and their loading levels (Fig. 2). In general, Pb, As

and Cs in contaminated soils showed distinguished solid-

phase distributions: Pb was dominantly presented in the

OM bound fraction (38–52 %); As mainly in the AmoFe

bound fraction (40–46 %); and Cs dominantly in the RES

fraction (62–68 %) and SOL ? EXC (10–17 %). The

native Pb, As and Cs in soils showed similar distributions:

Pb was dominantly bound to the AmoFe fraction (35 %),

followed by the OM fraction (28 %) and RES fraction

(18 %); As mainly bound to the AmoFe fraction (57 %),

followed by the ERO (14 %) and RES fractions (12 %);
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and Cs dominantly in the RES fraction (81 %), followed by

the SOL ? EXC (11 %) and OM bound fractions (7 %).

Obviously, distributions of Pb, As and Cs in soils were

significantly influenced by loading levels (Figs. 2, 3). Pb in

the OM and ERO fractions, As in the AmoFe and ERO

fractions, and Cs in the RES and SOL ? EXC fractions all

linearly increased with their loading levels. All other solid-

phase fractions slowly increased with the loading level as

well. This indicates that the organic matter (OM) and Mn

oxides (ERO fraction) were major solid-phase components

for binding added Pb, the amorphous iron oxides (AmoFe)

and Mn oxides (ERO) for added As, and surface

exchangeable sites on clay and oxide mineral surfaces (the

RES and SOL ? EXC fractions) for added Cs. Since Mn/

Fe oxides are surface susceptible to redox potential as a

change of water regime (Han and Banin 1996), the

decrease in redox potential in soil may result in the

increase in As and Pb bioavailability. Cesium is

significantly presented in the water-soluble and surface

exchangeable fractions, possessing a high solubility and

potential bioavailability.

It was reported that distribution of heavy metal(loid)s in

soils depended on the nature of elements and their total

content (Han et al. 2007). In addition, soil physicochemical

properties such as pH, redox potential and organic matter

content also influence speciation and binding in soils (Han

and Banin 1997; Nyamangara 1998). It was suggested that

the water-soluble and exchangeable fraction of metal(loid)s

were used to estimate their mobility and bioavailability to

plants (Adriano 2001; Kabata-Pendias 2000). Based on the

general distribution of metals/metalloids in soil solid

components, trace elements are divided into three cate-

gories according to their phytoavailability: readily

bioavailable (Cd, Ni, Zn, As, Se, Cu); moderately

bioavailable (Co, Mn, Fe) and least bioavailable (Pb, Cr, U;

Prasad 2003). Pb and As are the two most widespread

contaminants in soils. It was reported that exogenous Pb in

Fig. 2 Distribution of Pb, As and Cs among solid-phase components

in Mississippi Delta paddy soils as the increase in Pb, As and Cs

loading levels (Day 2 incubation)

Fig. 3 The increases in concentrations of Pb, As and Cs in solid-

phase fractions with total Pb, As and Cs loading levels (Day 2

incubation)
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agricultural soils was dominantly present in the RES

fraction, followed by the OM bound and ERO bound

fractions indicating the low bioavailability of Pb (Huang

et al. 2014). Arsenic in poultry waste-amended Mississip-

pian soil was mainly present in the RES and Mn/Fe oxide

bound fractions (Han et al. 2004a, b). However, arsenic in

mined soils was dominantly present in the AmoFe fraction,

followed by the CryFe and ERO fractions and a significant

increase in the SOL and EXC fractions was observed as the

increase in As addition (Marabottini et al. 2013). Not many

studies were reported on the distribution of Cs in con-

taminated soils.

Effect of the electrokinetic field (EKF) on soil pHs

The changes of soil pHs under EKF are shown in Fig. 4.

Medium concentration level of Pb (600 mg kg-1), As

(20 mg kg-1) and Cs (20 mg kg-1) were used for EKF

treatment, respectively. The pHs of different metal(loid)

contaminated soils without EKF were all around 6.7, while

pHs in the control soil without metal(loid) were around 7.49.

This suggested that distribution of metal(loid)s in MS River

Delta paddy field soil reduced soil pH. With enhancement of

EKF, the pHs of treated soils were significantly polarized

upon the electricity current. Sub-region soils near the anode

and cathode areas for Pb-, As- and Cs-treated soils were

around 1.5 and 10.8, respectively, which significantly

changed compared to those without EKF. The data indicated

significant acidification and alkalization under operational

electrical conditions at DC electrical field intensity of

1 V cm-1 for a period of 15 days (24 h a day). It was

resulted from the electrolysis of water releasing proton

(2H2O ? O2 (g) ? 4H? ? 4e at the anode; 4H2O

? 4e ? 2H2 (g) ? 4OH- at the cathode) during the EKF.

Furthermore, the pHs of soils in the middle region (around

7.5) were larger than those without EKF (around 6.7) indi-

cating the migration of OH- from the cathode to the anode.

Since most metal(loid)s are solubilized in acid soil

environment, lowering soil pH becomes a strategy for

increasing bioavailability of most metal(loid)s in soils.

Strong acids and weak acids are usually used to neutralize

the OH- in soils with high acid/base buffer capacity

(Pérez-Esteban et al. 2013). However, potential risks may

be generated in the acidification process. It was reported

that, lowering soil pH with HCl may increase the leaching

potential of metals and Cl- to groundwater and the for-

mation of some insoluble salts (i.e., PbCl2; Yeung and Gu

2011). Weak acid such as citric acid and acetic acid are

environmental friendly and biodegradable, while their

effect on lowering soil pH is not as effective as strong acid

(Yeung and Gu 2012). As supported by the present study,

EKF seemed an effective technique to lower soil pH

(Puppala et al. 1997). H? generated by the electrolysis of

water decreased the soil pH near the anode region. Through

electromigration and electroosmosis, H? could be trans-

ported toward the cathode and naturalize generated OH-

ions to some extent (Kim et al. 2010). Acidification of soil

pH was beneficial for solubilization and removal of

metal(loid)s such as Pb, Cr, Cd, Cu and Zn (Altin and

Degirmenci 2005; Iannelli et al. 2015; Lu et al. 2012;

Virkutyte et al. 2002). In addition, addition of organic acids

may neutralize the OH- to some extent and avoided the

precipitation of metal(loid)s in the vicinity of the cathode

(Lee and Yang 2000; Saichek and Reddy 2003).

Fig. 4 Effects of EKF on pH changes of Pb-, As-, and Cs-

contaminated soil in the anode (?), cathode (-), the middle region

(M) between two electrodes, the control soil (CK) and the polluted

soils without EKF (Pb, As, Cs). Soil was contaminated with

600 mg kg-1 Pb, 20 mg kg-1 As and 20 mg kg-1 Cs. Means

followed by the asterisk were significantly different compared with

the control soil (CK) at P\ 0.05
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Distribution of Pb, As and Cs among solid-phase

fractions with EKF treatment

The distribution of Pb, As and Cs among solid-phase

components under EKF are shown in Fig. 5. With

enhancement of EKF, distributions of Pb, As and Cs in

soils were dramatically changed. Generally, the native Pb

was mainly present in the AmoFe and OM fractions while

added Pb at 600 mg kg-1 was mainly in the OM, followed

by AmoFe and ERO fractions. With EKF, Pb in soil near

the cathode and the middle regions was similar to the

treated Pb without EKF, but Pb in the soil near to the anode

was dominantly in the water-soluble (SOL) form. Pb in the

SOL fraction increased from the soil near the cathode, to

the middle region, to the soil near to the anode due to the

acidification. The OM bound fraction of Pb decreased from

the soil in the cathode (57 %) to that in the anode areas

(6.0 %). Same patterns were observed for Pb in the AmoFe

(27–5.8 %), CryFe (6.4–0.4 %) and RES (7.1–1.9 %)

fractions. On the contrary, the SOL fraction was increased

from 1.4 % near the cathode to 86 % near the anode

indicating the large potential mobility and bioavailability

of Pb enhanced with EKF.

The native and added As was mainly presented in the

AmoFe and ERO fractions. With EKF, As in soils near to

the cathode and the middle region was similar to As-treated

soil without EKF. As in the AmoFe fraction decreased

from the cathode (54.7 %), to the middle region (49 %)

and to the anode region (46 %). However, the water-sol-

uble As (SOL) in the anode increased to 20.7 % while that

in the cathode was 5.7 %.

The native and added Cs in soils was dominantly pre-

sented in the RES fraction with a significant amount in the

EXC and OM fractions. With EKF, Cs in the EXC fraction

increased from the soil near the cathode to the middle

region, to the soil near the anode. A large decrease was

shown in the RES fraction from the areas near the cathode

(82 %) to the anode (65 %). Cs in the EXC fraction

increased from the cathode (0.36 %), to the middle region

(2.8 %) and to the anode region (3.5 %).

Distributions of Pb, As and Cs in the anode region were

more significantly affected than in cathode areas during the

EKF. This was the result of strong acidification for solu-

bilization of Pb and Cs around the anode as well as possible

electromigration of As anion from the cathode where As

was solubilized at high pH. Basically, more water-soluble

Pb and As (SOL) were presented in the soil near the anode,

while more Cs was found in EXC fraction due to strong

acidity. Since acid environment is more beneficial for the

transformation of metal(loid)s from the stable forms to the

labile forms, Pb, As and Cs in the ERO bound, AmoFe

bound and CryFe bound fractions in soils were transferred

and redistributed to the SOL and EXC fractions. Further-

more, changes in the solid-phase distribution in soils near

the anode were significant compared to those in the middle

region and cathode areas, i.e., building up of water-soluble

and exchangeable ions in the anode may potentially facil-

itate the transport of ions such as diffusion processes from

the anode to the cathode based on electroosmosis and

electromigration. However, the effect of ion transport/dif-

fusion on metal(loid) distribution and alternations of

parameters in EKF such as the application of AC electrical

field and the distances between the electrodes required

further investigation to ensure the homogeneous distribu-

tion of metal(loid)s in soil.

The SOL and EXC fractions of metals/metalloids in soil

represent their mobility and bioavailability to plants.

Obviously, concentrations of Pb, As and Cs in SOL and

Fig. 5 Distribution of Pb, As and Cs among solid-phase components

in contaminated soil with EKF in the anode (?), cathode (-), the

middle region (M) between two electrodes, the control soil (CK) and

the polluted soils without EKF (Pb, As, Cs). Soil was contaminated

with 600 mg kg-1 Pb, 20 mg kg-1 As and 20 mg kg-1 Cs
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EXC fractions were strongly affected by EKF (Figs. 6, 7).

At Pb addition of 600 mg kg-1, the SOL fraction of Pb in

soil increased from 1.41 mg kg-1 near the cathode, to

69.46 mg kg-1 near the middle region and 118 mg kg-1

near the anode. Slight increase in the EXC fraction was

shown (0.05 mg kg-1 increase) in the anode area. It was

suggested that the native Pb in soil usually is not

bioavailable for phytoextraction. However, Pb tends to

transfer to the SOL fraction under EKF. With As addition

of 20 mg kg-1, the SOL fraction of As in soil increased

from 5.6 mg kg-1 near the cathode, to 13.4 mg kg-1 near

the middle region and 19.1 mg kg-1 near the anode, while

little decrease in the EXC fraction was shown in all sam-

ples. It may indicate that the EXC fraction of As in soil

tended to transform to the SOL fraction upon EKF. With

Cs addition of 20 mg kg-1, a slight increase in the SOL

fraction was found in the middle and cathode areas (0.82

and 0.71 mg kg-1, respectively). However, Cs in the EXC

fraction was significantly increased in the anode area

(3.48 mg kg-1) compared to that in the cathode

(0.36 mg kg-1) which may suggest the Cs was more able

to be adhered to adsorption sites of colloids in soil pore

influenced by the EKF. Results of the SOL and EXC

fractions indicated the comparable higher mobility and

Fig. 6 Changes of soluble Pb, As and Cs in soils with EKF in the

anode (?), cathode (-), the middle region (M) between two

electrodes, the control soil (CK) and the polluted soils without EKF

(Pb, As, Cs). Soil was contaminated with 600 mg kg-1 Pb,

20 mg kg-1 As and 20 mg kg-1 Cs. Means followed by the asterisk

were significantly different compared with the control soil (CK) at

P\ 0.05

Fig. 7 Changes of exchangeable Pb, As and Cs in soils with EKF in

the anode (?), cathode (-), the middle region (M) between two

electrodes, the control soil (CK) and the polluted soils without EKF

(Pb, As, Cs). Soil was contaminated with 600 mg kg-1 Pb,

20 mg kg-1 As and 20 mg kg-1 Cs. Means followed by the asterisk

were significantly different compared with the control soil (CK) at

P\ 0.05
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bioavailability of As and Cs. Larger addition of As and Cs

and parameters in EKF such as the electrical field intensity

may play important roles in further improving their

mobility and bioavailability (Fig. 8).

Moreover, acidification transformed stable fractions (the

OM and AmoFe fractions for Pb, the AmoFe fraction for

As and the RES for Cs) into the SOL (Pb and As) and EXC

(Cs) fractions in soils near the anode (Fig. 8) . Low

bioavailability constrains the phytoextraction efficiency of

heavy metals (i.e., Pb), while the changes of soil physical–

chemical properties may enhance their availability and

mobility. Plants have developed their own strategy for

dissolving metals. Secretion of H? ions by roots will

compete binding sites on soil particles with heavy metal

cations. As a result, more metals are mobilized under acid

condition around rhizosphere (Thangavel 2004). Moreover,

activities of rhizospheric microbes significantly increase

heavy metal bioavailability which results in the increase in

the labile metal in soil (Sheoran et al. 2009). In addition to

mobilization by plant itself, the solubility of metal(loid)s

could also be enhanced by extraneous soil amendments

such as chelating, complexing, organic and microbial

agents (Bolan et al. 2014). However, there are still some

limitations in applying soil amendments associated with

phytoremediation. EDTA was the most common chelating

agent for increasing water-soluble metal(loid) in soils (Han

et al. 2004a, b). There is no standard for the additive

amount of EDTA according to different types of soils and

contaminated metal(loid)s. Therefore, excessive addition

may cause the leaching of EDTA, plant phytotoxicity and

the pollution of groundwater (Han et al. 2004a, b; Wu et al.

2004; Zhao et al. 2011). Engineered microorganisms are

usually introduced to soil as microbial agents which

effectively increase the mobility of metal(loid)s. However,

they may disrupt the ecological balance of the soil envi-

ronment and lead to species invasion as a consequence of

competition with indigenous microorganisms (Roane et al.

2015). It was reported that the SOL fraction of Pb was

dramatically increased in soil stimulated by EKR and the

phytoremediation could remove 95 % of Pb with an opti-

mization of electrical field intensity and stimulation period

(Yang and Lin 1998). EKP treatment also significantly

decreased the dominant AmoFe As and CryFe As fractions

by 42 and 10 %, respectively, and the removal of total As

by phytoremediation increased to 32 % after 4 weeks of

EKR (Jeon et al. 2015). In addition, 58 % of Cs was

removed after 3 weeks of EKR with electrical field of 5 V

(Kim et al. 2015). Without pH maintenance near the

cathode, precipitation of metal(loid)s may be generated due

to the high OH- concentration implying the decreased

bioavailability of Pb and Cs in soils near the cathode.

However, some limitations appeared over the electroki-

netic remediation. Gas species produced during water elec-

trolysis as discussed above may be trapped near the surface

of the electrodes thus increasing the resistance and signifi-

cantly slowing the remediation process (Sah and Chen,

1998). This required initial low voltage with lower resis-

tance in soil and progressive increase in the voltages due to

increased resistance developed over the electrokinetic pro-

cesses. Other possible species such as potential precipitated

hydroxides of cations due to the increased pH around the

Fig. 8 Changes in selected solid-phase fractions of Pb, As and Cs in

soils with EKF in the anode (?), cathode (-), the middle region

(M) between two electrodes, and the polluted soils without EKF (Pb,

As, Cs). Soil was contaminated with 600 mg kg-1 Pb, 20 mg kg-1

As and 20 mg kg-1 Cs. Means of each metal(loid) fraction followed

by asterisks were significantly different compared with that of

polluted soils without EKF
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cathode plugged the soil pores, subsequently hindering the

electrical current and decreasing the diffusive flow over time

when the voltage is applied (Sah and Chen 1998).

Conclusion

The native Pb in the MS River Delta paddy soils was

mostly in the AmoFe, OM and RES fractions, the native As

in the AmoFe, ERO and RES fractions, while Cs in the

RES fraction. In general, added Pb, As and Cs in paddy

soils showed distinguished solid-phase distributions con-

trolled by the nature of the element: Pb was dominantly

present in the OM fraction (38–52 %); As in the AmoFe

fraction (40–46 %); and Cs in the RES (62–68 %) and

SOL ? EXC (10–17 %) fractions.

The solid-phase distributions of added Pb, As and Cs

were significantly influenced by the electrokinetic field.

EKF treatment was efficient on lowering soil pH near to the

anode through hydrolysis of water in releasing proton

which is beneficial for the dissolution of metal(loid)s. The

acidification in the anode region under EKF efficiently

increased the SOL Pb (by 193 times) and EXC Cs (by 1.3

times) in the soils while possible electromigration of As

anion from the cathode where As was solubilized at high

pH may be responsible for building up of SOL As in the

anode region (by 2.6 times). In addition, the SOL and EXC

fractions progressively decreased from soils in the anode to

the cathode areas which implied both acidification of H?,

solubilization/mobilization of elements in the anode and

possible precipitation in the cathode due to high OH-

concentration. The bioavailability of Pb, As and Cs may

increase upon EKF treatment due to their significant

presence in the soluble and exchangeable forms, indicating

the EKF treatment might be a good alternative for

increasing metal(loid) bioavailability in phytoremediation

of Pb-, As- and Cs-contaminated soils. Further studies are

required on pH maintenance near the cathode by using

organic acids such as acetic acid and citric acid, opti-

mizations of electrical parameters including electrical field

intensity, current application mode, the distance between

the electrodes and stimulation period and their enhance-

ment on the mobility of bioavailability of metal(loid)s.
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