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Age and Sex-related Dendritic Changes in the
Visual Cortex of the Rat
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Abstract: Visual functions undergo an age-related degradation. However, the neural mechanisms underlying these
changes are not yet clear. This study was designed to investigate the influence of age and sex on the anatomy of the rat’s
visual cortex . Dendritic tree extent and spine density were examined in young adult rats ( 2-3 months ) and aged male and
female rats ( 22-24 months ) using a modified Golgi-Cox staining method . A sex difference in dendritic branching of the
pyramidal cells was found among young adults. However, this difference disappeared during aging, due to a reduction in
branching with age for males but not for females. Moreover, the pyramidal cells of young males also have a greater spine
density . Although there was a reduction in spine density with age for both sexes, this reduction was more pronounced for
males, resulting in a disappearance of sex difference with age. Thus these results suggest that aging could lead to the de-
generation of dendrites, which might contribute to the degradation of age-related visual functions. Also the results indicate

that age-related degeneration of dendrites is more severe for males than for females.
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It is well known that visual functions are impaired ed visual function declines remains a critical challenge
during normal aging ( Hua, 2004 ). However, to un- in neurebiology. Although it was once hypothesized
derstand the mechanisms responsible for such age-relat- that functional declines arised from widespread and
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substantial loss of neurons, increasing evidence sug-
gests that in most regions, including the visual cortex,
the number of cortical neurons is largely preserved dur-
ing aging ( Peters et al. 1998; Terry et al, 1987 ).
However, many neurons may undergo structural or
neurochemical changes that alter their functions. For
example, an age-related breakdown of myelinated
nerve fibers has been reported in the monkey visual
cortex which may account for impairments in cognition
{ Peters et al. 2000 ). An age-related loss of GABA (y-
aminobutyric acid ) was also thought to be correlated
with the visual function declines ( Leventhal et al,
2003 ). For a long time, age-related changes in den-
drites were of particular interest, since dendrites are
the targets of the majority of synapses, and since den-
drites remain plastic even into adulthood ( Harris &
Kater, 1994; Kolb et al, 1998 ). Moreover, recent
studies suggest that both the extent and pattern of the
dendritic arbor could influence how synaptic inputs are
integrated { Yuste & Tank, 1996 ). Thus, age-related
changes in dendritic geometry might significantly alter a
neuron' s physiological response properties, thereby
contributing to the cognitive changes that often accorn-
pany senescence. Although several investigators have
reported age-related changes in dendrites, the result is
quite confused. Dendritic stability, lengthening and re-
gression have all been reported previously, and the re-
ported changes in spine density are also nconsistent
(de Brabander et al. 1998; Markham et al, 2005;
Pyapali & Tumer, 1996; von Bohlen et al, 2006;
Nicolle et al. 1999 ). However. possible age-related
changes in dendrite tree extent and spine density in the
rat visual cortex have not been investigated .

Visual function may also be sexually dimorphic
(Seymoure & Juraska, 1997; Wang, 2006 ). Recent-
ly. Seymoure and Juraska ( 1997 ) reported that there
may be sex difference in visual perceptual abilities be-
tween male and female rats. In our lab, Wang ( 2006 )
has also reported that the visual cortical cells of aged
male rats have a significantly increased spontaneous
rate and a significantly decreased signal-to-noise ratio
than that of aged female rats. Although there have been
some reports about the sexually dimorphic aging of den-
dritic morphology, few investigators have considered the
sexual influence of dendrites in the visual eortex { Shors
et al, 2001; Munoz-Cueto et al, 1990; Markham et al,
2005 .

This study was designed to investigate how age

and sex influence the anatomy of the visual cortex using
a modified Golgi-Cox staining method, which is simple
and has proven to be useful in several types of studies
of cortical plasticity .

1 Materials and Methods

1.1 Subjects

Subjects were 20 Long-Evans hooded rats, reared
in the Labhoratory of the Animal Center at the University
of Seience and Technology of China. Rats were of the
following sexes and ages: young adult { 2 -3 menths; 5
male and 5 female ) and aged (22 -24 months; 5 male
and 5 female ). All were allowed free access to food
and water. Colony! rooms were maintained on a 12 h
light/dark cycle. All animal treatments were in accor-
dance with the National Institutes of Health’s Guide for
the Care and Use of Laboratory Animals. All efforts
were made to minimize animal suffering and to reduce
the number of animals used.

1.2 Histology

Allrats ( n = 5 per group ) were deeply anaes-
thetized with urethane and perfused intracardially with
0.9% saline solution. The brains were removed and
prepared for processing by Golgi-Cox staining, which
was deseribed by Gibb and Kelb ( Gibb & Kelb, 1998;
Li et al, 2002 ). They were then embedded with wax,
and serial coronal sections ( 60 yum thick ) were cut per-
pendicularly to the pial surface of the lateral gyrus in
the visual cortex ( ranging from AP 1.0 to 5.0, Lateral
6.0to 9.6 mm ) { Paxinos & Watson, 1986 ) using a
Rotary Type Microtome { American Optical ). From
each hemisphere of each animal, at least eight sections
were randomly sampled at a regular interval of about
400 pm apart. Sections were collected on cleaned,
gelatin-coated microscope slides followed by deparaffin
and then Kodak developer D-76 for film for another 3
min. The sections were then washed with distilled wa-
ter, dehydrated, cleared, and mounted using a resinous
medium.

Slides bearing Golgi-impregnated sections were
examined under light microscopy. Only neurons with
the following criteria were used for quantitative analy-
sis: (1) location of the cell soma in layers [[-TV of the
visual cortex; ( 2) full impregnation of the neurons;
(3) presence of at least three primary basilar dendritic
shafts, each of which branched at least once; (4 ) no
morphological changes attributed to Golgi-Cox staining.
At least eight neurons per rat were photographed at a



No. 3 XU Ye-hua et al: Age and Sex-related Dendritic Changes in the Visual Cortex of the Rat 299

magnification of 400 x { BX-60, Olympus Microscope )
by a person blind to the experimental groups ( Jacobs et
al, 1997; Kolb et al, 1998 ).

For each neuron, the dendritic tree, including all
branches, was quantified by Sholl analysis as follows.
A transparent grid with concentric rings, equivalent to
15-um spacing, was placed over the dendrite picture,
and the number of ring intersections was used to esti-
mate the apical, basal and total dendritic length
(TDL ). The spine density, which was defined as the
number of spines per unit length, was estimated by
counting the total number of spines visible along both
sides of the segment ( at least 10 pm long ). Spines
were counted on the randomly selected second-order
segment from the basilar dendrites. Approximately 2 -3
segments were counted per slide and at least 6 slides
were taken from each rat { Kolb et al, 1998 ).

1.3 Statistical analysis

Data from the neurons’ spine densities and den-
dritic lengths were analyzed first by Two-way ANOVAs .
Planned post hoc comparisons were computed using the
least significant differences approach on the following
groups: young males vs young females, young males vs
aged males, young females vs aged females, aged
males vs aged females. All analyses were conducted
using the SPSS software package { P < 0.05 was con-

sidered significant ),
2 Results

2.1 Dendritic spine density

The dendritic spine density was influenced by
hoth age [ F=89.8 (1, 16}, P <0.001 ] and sex [ F
=5.3(1, 16), P <0.05]. Additionally, an interac-
tion between the influences of age and sex was found
on this measure [ F =18.5(1, 16), P <0.001 |. An
age-related decrease in spine density ocecurred among
hoth the male group { P <0.001) and the female group
(P <0.001). A sex difference in spine density was
found only among young animals. Young males pos-
sessed higher spine density than young females ( P <

0.01 ). Unlike in the young animals, no sex difference
was found among aged animals ( P =0.18 ) ( Tab. 1,
Fig. 1).

2.2 Dendritic complexity

Apical dendritic tree extent, as estimated by the
total number of Sholl ring intersections, was influenced
by both age [ F=45.1{1, 16), P <0.001] and sex
[F=7.6(1, 16}, P =0.014]. An interaction be-
tween the influence of age and sex was found on this
measure | F = 16.1 {1, 16 ), P < 0.001 . Also,
there was an age-related decrease in apical tree extent
among males ( P <0.001 ), but not in females. A sex
difference , favoring males, was found among young an-
imals { P <0.01). As with spine density, the sex dif-
ference apparent among young animals was not found in
aged subjects.

A similar age-related decrease was also found in
hoth the basilar and total dendritic tree extents [ basilar
F=32.3(1,16), P <0.001, total F=52.1(1, 16,
P <0.001 ]. Sex also influenced the basilar and total
tree extents [ basilar F=4.9(1, 16), P <0.05, total
F=83(1, 16}, P < 0.05], with males having
greater tree extent than females in young adults ( basilar
P <0.05, total P <0.01). However, the sex differ-
ence disappeared during aging ( Tab. 1, Fig. 2, 3).

3 Discussion

A series of studies on human beings and animals
showed that many visual functions deteriorate with age.
The aged, compared with the young, demonstrated not
only slower information processing and prolonged re-
sponse latency, but alse reduced visual acuity, contrast
sensitivity and so on. These functional declines might
be partially due to the degeneration of the dendritic
tree . However, there is no clear model of how the den-
dritic extent is regulated in the aging brain as yet ( Hua,
2004; Mendelson & Wells, 2002 ). Dendritic stabili-
ty, lengthening and regression have all been reported.
Although the methodological differences may account

for some of the varied findings, it seems reasonable to

Tab. 1 Morphometric dendritic measurements of cortical neurons from young and aged rats

Parameter Young male Young female Aged male Aged female
Dendritic length ( pm)

Apical 591.4+13.5 441.2+20.0% 353.7£17.2™ 381.6+24.2
Basilar 1271.5+48.8 992.3+73.2°% 772.6 65,97 T13.61£61.9
Total 1861.9+45.1 1419.6 £96.7% 1116.1+£72.9™ 1155.2 +53.7
Spine density ( number/gm )

Basilar 0.43+0.018 0.35+0.005" 0.26+0.013™ 0.28+0.009™

*P<0.05, * P<0.0l, ™ P<0.001{young vs aged ); * P<0.05, * P<0.0l, * P <0.001( young male vs young female ).
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conclude that the age-related changes in dendrites is
species, region and even layer-specific { Duan et al,
2003; Grill & Riddle, 2002 ).

The present study demonstrates a considerable re-
duction in both spine density and the complexity of api-
cal and basilar dendrites in the rats’ visual cortex dur-

ing aging process. The age-related decreases in the

complexity of apical and basilar dendrites in the rats’

0. 030 mm
Fig. 1 Photomicrographs of basilar dendrite spine
in the wizsual cortex
A: Young male; B: Young female;
C: Aged male; D: Aged female. n =35, each group.

Fig. 2 Photomicrographs of Golgi-Cox stained pyramidal neu-
rons in the visual cortex

A: Young male; B: Young female;

C: Aged male; D: Aged female. 1 =35, each group.

visual cortex mirrors the results of previous studies on
aged rodent parietal and medial frontal cortexes { Wong
et al, 2000; Grill & Riddle, 2002 ). Although the po-
tential mechanism is not clear yet, the age-related de-
cline in protein and mRNA expression of dendrite-spe-
cific microtubule-associated protein { MAP2 ) might be
related to the dendritic retraction ( Shimada et al,
2006 ). The members of the neurotrophin family of
growth factors, as well as several other neurotrophic
factors, have been demonstrated to regulate dendritic
erowth in the developing brain. For example, recent
studies of the developing rodent cortex revealed promotion
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of dendritic growth by brain-derived neurotrophic factor
( BDNF ) and neurotrophin-4 { NT-4 ), as well as by in-
sulin like growth factor-1 { IGF-1 ) ( McAllister et al,
1995; Niblock et al, 2000 ). As the levels of several
neurotrophic factors deereased, including BDNF and
IGF-1, it was reasonable to propose that age-related
declines in trophic support lead to dendritic regression
in some neural regions, and thus to functional deficits
(Silhol et al, 2005; Katoh-Semba et al, 1998; Son-
ntag et al, 1999 ). While the measurement of spine
density might be underestimated using a light micro-
scope, due to a lack of spines on the backside of the
dendrite, the result is still believable because we used
the same eriteria during the assessment; also the young
groups have higher spine density { Jacobs et al, 1997 J,
Unlike the changes in dendritic tree extent, this study
indicates an age-related decrease in spine density in
both the male and female groups. The extent of the
age-related decreases in the spine density in the visual
cortex is consistent with that in the anterior cingulate
cortex, which might be due to a decrease in the ex-
pression of the synapse-related proteins, such as
synaptophysin and PSD-95 ( Markham & Juraska,
2002; Shimada et al, 2003 ). Once again, the study
confirms the hypothesis that changes in dendritic length
and dendritic spine density are independent processes
(Kolb et al, 1998 ).

In addition to age, our study indicates that the
neuroanatomy of the visual cortex consistently varies
with sex. The results of this study indicate that young
adult males have greater dendritic spine density and ar-
borization on both the apical and basilar dendrites com-
pared to females on pyramidal cells in layers [[- IV of
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