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Abstract: Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they 
fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological 
approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, 
a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic 
comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative 
systems biology, which we define as “comparisons of biological systems in different states or species used to achieve an integrated 
understanding of life forms with all their characteristic complexity of interactions at multiple levels”. Furthermore, we discuss the 
applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess 
the potential applications for this approach in the future studies. 
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Accurately modeling the physiology and pathology 
of human systems research requires the establishment of 
a quality animal model (Alvarado & Tsonis 2006; 
Francia et al, 2011, 2006; Götz & Lttner 2008; Hasenfuss 
1998; Lieschke & Currie, 2007). To this end, generally, 
how closely the model should mimic the human disease 
depends on the scientific question under investigation. 
Only in cases when the causal connections—structure 
function relationship or regulation of gene expression—
are definitive, can the differences between human and 
animal models have minor effect on the analysis results 
(Hasenfuss, 1998). For example, although the zebrafish 
(Danio rerio) is phylogenetically distant from humans, 
its use as a complete animal model for in vivo drug 
discovery and development is growing rapidly 
(Chakraborty et al, 2009). However, if the 
pathophysiological processes are studied, especially for 
the complex diseases, then models should mimic clinical 
settings as closely as possible, otherwise the expected 
results may not be achieved or the findings of such 
studies will be of limited value.  

Accordingly, comparisons between human and  
animal models are becoming increasingly important for 
both clinical and fundamental applications (Alini et al, 
2008; Cox et al, 2009; Fuentes et al, 2009; Huh et al, 
2010; Merchenthaler & Shughrue, 2005; Nestler & 
Hyman, 2010; Northoff, 2009). Among the available 
strategies to assess this connection, comparative systems 
biology has begun attracting special attention (Cox et al, 
2009). 1 

In this review, we introduce the concept of 
comparative systems biology. Next, we focus on the 
applications of next-generation sequencing methods, 
including RNA-seq and ChIP-seq, to comparative 
systems biology between human and animal models, 
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before outlining some general directions of future 
developments and impacts of these types of studies. 

The rise of comparative systems biology 
One of the greatest twentieth century achievements 

in biological research is undoubtedly the sequencing of 
different genomes. There are now complete genome 
sequences for more than 1,000 organisms (excluding 
bacteria and archaea), with more sequences being 
completed (Henkelman, 2010). Once the genome of a 
species is available, researchers are able to begin 
mapping sequences against humans and find candidate 
disease genes and build a proper disease model. However, 
the ability to fundamentally understand the genotype–
phenotype relationship in a distinct species is often 
hindered by the inherent complexity of biological 
systems. The difference in genotype–phenotype 
relationships between human and animal models may 
originate from three sources (Figure 1): (1) functional 
divergence of genes or proteins; (2) gene deletions or 
duplications; and (3) divergent up- or down-stream 
components, out of which gene deletions or duplications 
may play the leading role (Jaillon et al, 2004).  

 

Figure 1  Mechanisms of different genotype-phenotype 
relationships between human and animal models  

The difference in genotype–phenotype relationships between human and 
animal models may originate from three sources: (A) functional divergence 
of genes or proteins; (B) gene deletions or duplications; and (C) divergent 
up- or down-stream components, out of which gene deletions or 
duplications may play the leading role. In the schematic drawing, Gene A 
and Gene A’ are orthologs while Gene A’ and Gene A’’ are paralogs due to 
gene duplication. 

 

Over the last decade, this third mechanism has 
received more attention in systems biology. The Rb 
(Retinoblastoma) gene family is a good case, because the 
members in this family are functionally conserved while 
the involved pathways are divergent between C. elegans 
and humans (van den Heuvel & Dyson, 2008). Likewise, 
a previous study reported that over 20% of the essential 
genes for humans are non-essential for mice (Liao & 
Zhang, 2008). Consequently, traditional molecular 
biology techniques, while providing valuable insights 
into individual and/or simple genotype–phenotype 
relationship, are insufficient in deducing the complex 
phenotype-genotype relationships. Therefore, the more 
systematic methods at the systems biology level are 
necessary.  

The ultimate goal of systems biology is generating 
successful models to comprehensively describe living 
organisms. Comparative systems biology, an important 
subfield of systems biology, has no straightforward 
definition. In animal model research, the term first 
appeared in Ogawa et al’s (2008) work, reporting a 
comparative study of circadian oscillatory network 
models of Drosophila. Here, we define comparative 
systems biology as “comparisons of biological systems in 
different states or species to achieve an integrated 
understanding of life forms with all their characteristic 
complexity of interactions at multiple levels.” The 
comparison can be performed either horizontally (e.g., 
between individuals or states) or longitudinally (between 
species). The latter, which is mainly focused on human 
and animal models, is reviewed in detail here. 

Over the past decade, comparative systems biology 
has attracted widespread interest, especially for its utility 
in comparisons between human and animal models of 
complex diseases. Miller et al (2010) used a systems 
biology approach to find a number of divergent network 
modules relevant to Alzheimer disease between humans 
and mice. In a previous work, we compared humans and 
four common animal models of cardiovascular disease 
through comparative transcriptome and pathway analysis, 
revealing that a few pathways have functionally diverged 
(Zhao et al, 2012). A recent review highlighted that the 
emerging technologies in comparative systems biology 
between human and animal models offers a platform to 
systematically explore not only the molecular 
mechanism of a particular disease, thus leading to the 
identification of disease modules and pathways, but also 
the molecular relationships among distinct 
(patho)phenotypes (Barabasi et al, 2011). 

The majority of recent comparative systems biology 
studies on obtain their data through traditional high 
throughput technologies, such as microarray and ChIP-
chip. Despite the experimental and statistical rigor as 
well as substantial insights gained through these methods, 
there has been a fundamental shift from these first-
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generation technologies (microarray and ChIP-chip) to 
next-generation sequencing (RNA-seq and ChIP-seq) 
over the last five years. We surmise that the applications 
of next-generation sequencing methods will serve a 
crucial function in the field of comparative systems 
biology between human and animal models, offering a 
number of potential advantages. 

RNA-seq in transcriptome studies 
Previous studies demonstrated that changes in gene 

expression underlie many or even most of phenotypic 
differences between species (Marques et al, 2008; Yanai 
et al, 2004). As a result, comparative transcriptome 
analysis potentially provides information on functional 
conservation for candidate human disease genes within 
animal models. 

Initial trancriptomics studies largely relied on 
hybridization-based microarray technologies and have 
yielded valuable insights into the functional divergence 
between human and model animals (Enard et al, 2002; 
Liao & Zhang 2006). However, microarray technology 
has several limitations: over reliance upon existing 

knowledge about genome sequences; high background 
levels owing to cross-hybridization; and a limited 
dynamic range of detection owing to both background 
and saturation of signals (Wang et al, 2009). Recent 
advances in the DNA sequencing technology have 
enabled sequencing of cDNA derived from cellular RNA 
by massively parallel sequencing strategies, a process 
termed RNA-seq (Garber et al, 2011; Mortazavi et al, 
2008). Compared with the microarray, RNA-seq has the 
advantage of allowing high-resolution characterization 
and quantification of transcriptomes with low 
background noise and the ability to distinguish different 
isoforms. 

Figure 2 shows the key procedures performed 
during RNA-seq analysis of comparative transcriptomes 
between human and animal models. The computational 
challenges in this process have been reviewed in detail  
by (Garber et al, 2011), therefore, we mainly illustrated 
the potential advantages of RNA-seq in comparative 
systems biology, including (a) comparisons between 
human and non-model animals, and (b) actual biological 
systems induced by the states of gene expression. 

 

Figure 2  RNA-seq methods in comparative transcriptome analysis 
There are two strategies for sequencing animal models. If the genome was not complete or was badly annotated, the genome-independent approach should be 
used (right part). The genome-guided approach is more typical (left part). 

 
Though a variety of organisms have been 

genomically sequenced, the majority of these are used as 
model organisms. Since microarray relies on the genome 
information, this technique has serious limitations in 
both quantifying and comparing gene expression profiles 
from non-model animals. RNA-seq, meanwhile, can be 
applied to reconstruct the complete and high-resolution 
transcriptomes across all species. To build the 
transcriptome, several methods based on RNA-seq have 
been developed, usually falling into two main classes: 
the ‘genome-guided’ (Guttman et al, 2010; Trapnell et al, 

2010) and genome-independent classes (De novo 
assembly) (Birol et al, 2009; Schulz et al, 2012). The 
first methods rely on a reference genome to initially map 
all the RNA-seq reads to the genome and then assemble 
overlapping reads into transcripts. Unfortunately, the 
genome-guided method is not always effective, both 
because despite a large drop in the cost of next-
generation sequencing, the study of a complete genome 
is still costly and difficult, especially for non-model 
organisms, and because the particular model being 
studied may be sufficiently different from its reference 
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genome because it comes from a different strain or line. 
Consequently, de novo assembly is particularly suitable 
for application to obtain accurate reconstructions. A 
recent study reported a large RNA-seq data set obtained 
from six organs of nine different mammals (human, 
chimpanzee, bonobo, gorilla, orangutan, macaque, 
mouse, opossum, and platypus) and one bird (chicken), 
including both males and females (Brawand et al, 2011), 
demonstrated the utility of applying comparative systems 
biology between human and non-model animals and 
elucidated the large evolutionary gaps among these 
model organisms. 

Determining the expression states (i.e., the presence 
or absence) of genes with low abundance is a challenge 
for microarray. Consequently, the reconstruction of the 
actual biological networks (e.g., protein-protein 
interaction, transcriptional regulation network, or 
metabolic network) in either human or animal models in 
a specific condition is very difficult, not to say anything 
of the difficulty in comparing the dynamic networks 
(Farmer et al, 2012). Moreover, abnormal variations in 
alternative splicing are also implicated in disease, thus 
alternative splicing is a critical factor to consider in 
building a proper and viable animal model (Luco et al, 
2011). Unfortunately, obtain the precise alternative 
splicing map using the microarray technique is almost 
impossible. 

RNA-seq data is highly replicable with relatively 
little technical variation. For many purposes, RNA-seq 
may be sufficient to sequence each mRNA sample once. 
The information obtained in a single lane of RNA-seq 
data appears to be comparable to that in a single array, 
and is therefore useful in enabling the identification of 
differentially expressed genes and allowing for additional, 
further analyses, such as detection of low-expressed 
genes, novel transcripts and alternative splice variants. In 
using this method, researchers can obtain actual 
biological networks in both human and animal models, 
and garner biologically meaningful results by comparing 
between these two networks. Rowley et al (2011), for 
example, compared the actual transcriptome in platelets 
between humans and mice, providing critical information 
used in the design of mouse models of hemostasis and in 
catalyzing the discovery of new platelet functions.. 

ChIP-seq for detecting regulation changes 
Molecular interactions between proteins and DNA 

play an essential role in the regulation of gene expression 
(Cawley et al, 2004; Pokholok et al, 2006). Accordingly, 
changes in protein–DNA interactions between human 
and animal models may lead to the divergent functions of 
homologous pathways (Brown et al, 2011; Greber et al, 
2010), which is also an important aspect of comparative 
systems biology. 

Chromatin immunoprecipitation (ChIP) followed by 
genomic tiling microarray hybridization (ChIP-chip) has 
become the most widely used approach for genome-wide 
identification and characterization of in vivo protein-
DNA interactions during the past decade (Ho et al, 2011). 
Specifically, when applied to the study of animal models 
of human disease, CHIP-chip approaches led to many 
important discoveries in relation to transcriptional 
regulation (Chen et al, 2008), epigenetic regulation 
through histone modification (Heintzman et al, 2007), 
and evolution of protein-DNA interactions (Kim et al, 
2007). 

Like the microarray technique, CHIP-chip also has 
some limitations arising from the innate characteristics of 
microarray hybridization. Chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) makes it possible to 
obtain the accurate information about the genome-wide 
profiling of DNA- protein interaction. Compared to the 
CHIP-chip, ChIP-seq has a higher resolution, fewer 
artifacts, a larger coverage and a more extensive dynamic 
range (Blow et al, 2010; Johnson et al, 2007; Mardis 
2007; Schmid & Bucher, 2007; Visel et al, 2009). 
Subsequently, we will introduce the practical 
applications of ChIP-seq in comparison between human 
and animals, including (1) identifying the regulatory 
sequences, and (2) tracing the evolution of epigenetic 
regulation. 

The human genome project, while obtaining the 
complete genomic sequences, leaves open the question 
of how to identify the regulatory sequences that control 
the spatial and temporal expression of genes unanswered 
(Birney et al, 2007; McGaughey et al, 2008). Through 
applying the ChIP-seq techniques with the enhancer-
associated protein p300 from mouse embryonic heart 
tissue, Blow et al (2010) made an attempt to identify 
candidate heart enhancers on genomic scale, revealing 
that most of the candidate heart enhancers were less 
deeply conserved in vertebrate evolution when compared 
to the enhancers that are active in other tissues. Such 
methods could also be applied to identification of other 
transcriptional factors (TFs), and therefore are helpful in 
the reconstruction of the transcriptional regulation 
network in human and animal models. Thankfully, the 
decreasing cost of ChIP-seq has extended the 
comparative systems biology investigation to some TFs. 
For example, Schmidt et al (2010) used ChIP-seq to 
determine experimentally the genome-wide occupancy of 
two TFs, i.e., CCAAT/enhancer-binding protein alpha 
and hepatocyte nuclear factor 4 alpha, in the livers of 
five vertebrates, revealing large interspecies differences 
in transcriptional regulation and providing insight into 
the evolution of regulatory networks. 

Epigenetic regulation is now accepted as being 
closely associated with human development, and 
subsequently many developmental disorders may be 
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caused by the dysfunction of this regulation (Gottesman 
& Hanson, 2005). However, due to the deficient 
knowledge of this phenomena in other animals, build 
proper animal models for these studies is difficult. 
Nevertheless, a recent study that employed the CHIP-seq 
technique to investigate the epigenetic regulation of 
histone H3 K4 on frogs (Xenopus tropicalis), revealed a 
hierarchy in the spatial control of zygotic gene activation 
(Akkers et al, 2009). Taken together, these advances lead 
us to speculate that the applications of CHIP-seq in 
comparative systems biology will be of great help in 
understanding embryonic diseases. 

Despite the advances that ChIP-seq offers, 
researchers should be cautious when performing ChIP-
seq analysis because the experimental steps in ChIP-seq 
involve several potential sources of artefacts (Park, 
2009). For example, one challenge in this technique is 
that the identified enriched regions are of different types 
for different proteins (for details, refer to (Park, 2009)). 
The other potential source of artefacts comes from the 
divergence of both protein and DNA; therefore when 
using this analysis, the control experiment should be 
designed carefully. 

Perspective applications of comparative 
systems biology 

Comparative systems biology takes advantage of 
the systematic information from other organisms and can 
be used to great effect in studying human physiology and 
disease. Over the coming years, we expect many exciting 
developments as this field evolves in several potential 
directions. 

Dynamic networks 
Biological systems exhibit complex dynamic 

behavior, enabling cells to react to various conditions or 

cell states such as cell cycle progression (Zhu et al, 2007). 
Although static biological systems have been well 
studied (Benfey & Mitchell-Olds, 2008; Gianchandani et 
al, 2006; Macilwain, 2011; Werner, 2007), the 
information gained from such studies is of limited use in 
moving forward due to the fact that the static interactions 
are often identified from cells exposed to a single 
condition or at a single time point, i.e., under nonnative 
conditions. Only recently have approaches emerged that 
attempt to analyze the dynamics of complex biological 
networks. For transcriptional regulatory interactions, 
ChIP-seq technology is likely to become increasingly 
popular as it can be used to uncover contextual and 
temporal variation. For context-specific metabolic 
network, RNA-seq could provide the dynamic states of 
metabolic enzymes. 

Biological engineering 
The ability to manipulate living organisms is at the 

heart of a range of emerging technologies aimed at 
addressing critical problems in environment, energy, and 
health. Because of their complexity and inter-
connectivity, however, animal models have been less 
than useful for engineered manipulation. To move 
forward with employing animal models with greater 
breadth and application, we vitally need more detailed 
information that can be obtained using new methods like 
those outlined in the present study. for instance utilizing 
real-time RNA-seq technique to obtain the information 
about the effects of perturbations on biological systems 
(Faith et al, 2011). Next-generation sequencing 
technology and the concurrent development of 
applications for it are a fast-moving area of biomedical 
research that greatly advance the development of 
comparative systems biology. 
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