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Abstract: The grass carp (Ctenopharyngodon idella) is one of the most important cultivated fish species in China. Mounting 
evidences suggests that microRNAs (miRNAs) may be key regulators of skeletal muscle among the grass carp, but the knowledge of 
the identity of myogenic miRNAs and role of miRNAs during skeletal muscle anabolic state remains limited. In the present study, we 
choose 8 miRNAs previously reported to act as muscle growth-related miRNAs for fasting-refeeding research. We investigated 
postprandial changes in the expression of 8 miRNAs following a single satiating meal in grass carp juveniles who had been fasting 
for one week and found that 7 miRNAs were sharply up-regulated within 1 or 3 h after refeeding, suggesting that they may be 
promising candidate miRNAs involved in a fast-response signaling system that regulates fish skeletal muscle growth. 
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The grass carp (Ctenopharyngodon idella) is one of 
the most important cultivated species in Chinese freshw-
ater aquaculture. Generally, fast skeletal muscle compri-
ses the largest tissue of the fish body (Zhang et al, 2009), 
and forms the main edible part of this species. Given the 
complicated development process as well as the impor-
tance of these tissues, gaining a clearer understanding of 
the mechanism underlying muscle development may 
provide key data for both developmental biologists and 
researchers attempting to improve grass carp muscu-
lature for aquaculture. 

Several lines of research have implicated growth 
factors, regulatory proteins, and transcription factors as 
key actors involved in the regulation and maintenance of 
skeletal muscle mass among fish (Nihei et al, 2006; 
Steinbacher et al, 2006; Chu et al, 2010). Recent studies 
found that alongside transcriptional factors involved in 
muscle proliferation and differentiation, a set of micro-
RNAs (miRNAs) may also play important roles in skele-
tal muscle development among vertebrate animals (Ge & 
Chen, 2011; Güller & Russell,  2010; Chu et al, 2013). 
MicroRNAs (miRNAs) are approximately 22-nt nonco-
ding RNAs that act as negative regulators of gene expr-
ession, either via inhibiting mRNA translation or prom-

oting mRNA degradation through base pairing to the 3' 
untranslated region (UTR) of target mRNAs (Xie et al, 
2005; Liu, 2008; Zhang & Wen, 2010). 1Furthermore, 
miRNAs regulate the expression of transcription factors 
and signaling mediators critical to both cardiac and 
skeletal muscle development and function (Callis & 
Wang, 2008; van Rooij et al, 2008). Studies using the 
mouse myogenic C2C12 cell line demonstrated miR-1 
and miR-133 are involved in myoblast proliferation and 
differentiation via regulation of the expression of 
HDAC4 and SRF, respectively (Chen et al, 2006). 
Meanwhile, miR-1, miR-133a and miR-206 (muscle-
specific miRNAs), were also noted to be differentially 
expressed in Japanese flounder (Paralichthys olivaceus) 
during metamorphosis, as well as in Nile tilapia (Oreo-
chromis niloticus) among several developmental stages. 
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Taken together, these findings imply that miRNAs likely 
play an important role in regulating muscle development 
(Fu et al, 2011; Yan et al, 2012a). Further evidences 
suggest that miRNAs act as key regulators of 
myogenesis, but unfortunately characterizing the identity 
of myogenic miRNAs and delineating the role of 
miRNAs during skeletal muscle anabolic state remains 
unclear. 

The maintenance of skeletal muscle mass is a 
complex and controlled process, largely influenced by 
both nutritional and physiological states of different 
animals (Fuentes et al, 2012). Fasting-refeeding protoc-
ols have been commonly used as models to investigate 
the regulation of muscle growth in fish species that 
experience the transition from catabolic to anabolic states. 
In the present study, we analyzed the expression of 8 
select miRNAs during skeletal muscle anabolic state 
using a fasting-refeeding experiment. The goal of our 
study was to better parse out the potential role of these 
miRNAs in skeletal muscle proliferation and different-
iation. The 8 miRNAs (miR-1a, miR-133a-3p, miR-
133b-3p, miR-146, miR-181a-5p, miR-206, miR-214 
and miR-26a) were previously reported to act as 
muscle growth- related miRNAs (McCarthy & Esser, 
2007; Flynt et al, 2007; Kuang et al, 2009; Yan et al, 
2012b). In theory, these miRNAs and their target 
genes may comprise a coordinated regulating net to 
favor resumption of myogenesis as an early response 
to refeeding.  

MATERIALS AND METHODS 

Fasting-refeeding experiments and sampling 
All grass carp individuals were reared under stan-

dard conditions at the Che Tian Jiang Reservoir in Loudi, 
Hunan, China. Two homogeneous groups of grass carp 
juveniles (average body weight 150 g, 90 days post-
hatching (dph)) were reared respectively in two net cages 
(5 m×5 m×2 m) with fifty fish per tank. All juveniles 
were fed under standard conditions for 3 weeks, after 
which the juveniles underwent fasting for 1 week, and 
were then fed a single meal, which was distributed to all 
individuals until they appeared to be visually satiated. At 
each time point from 0 h (before the recovery meal), and 
at 1, 3, 6, 12, 24, 48 and 96 h (hours after the single 
meal), six fish were sampled, wherein fast muscles were 
dissected from the dorsal myotome of individuals. The 
resulting samples were then snap-frozen in liquid 
nitrogen and stored at -80 °C until further processing.  

Quantitative real-time PCR for the miRNAs  
Tissue samples were ground in liquid nitrogen, and 

total RNAs were extracted using TRIzol (Invitrogen, 
USA), and then treated with RNAse-free DNAse I 
(Promega, USA) in the presence of RNAse inhibitor 
(Sigma, China Branch) followed by ethanol precipitation. 
The obtained RNAs were polyadenylated by poly (A) 
polymerase, and then reverse transcribed with one step 
PrimeScript miRNA cDNA synthesis Kit (TaKaRa, Dal-
ian, China) and a Universal Adaptor Primer (a poly (T) 
primer ligated with an adapter) for miRNA quantitative 
assays.  

The miRNA expression levels were quantified using 
real-time PCR with grass carp β-actin gene (GenBank 
No. DQ211096.1) as an internal control. The cDNA 
samples were used as templates for quantitative RT-PCR 
assays with SYBR Premix Ex Taq II (TaKaRa, Japan) 
and its amplification reaction was carried out on a Bio-
Rad CFX96 system (USA). Each 2 μL cDNA template 
was added to a total volume of 25 μL reaction mix 
containing 12.5 μL SYBR Green mix, 1 μL of each 
miRNA or gene specific forward primer (as shown in 
Table 1, 10 μmol/L) and 1μL of universal downstream 
primer (Uni-miR qPCR Primer, 10 μmol/L, TaKaRa) or 
gene specific reverse primer, 8.5 μL nuclease-free water. 
The protocols used are as follows: (i) pre-denaturation at 
95 °C for 60 s; (ii) amplification and quantification, 
repeated 40 cycles of at 95 °C for 5 s and at 60 °C for 25 
s; (iii) melting curve program (65-95 °C with heating rate 
of 0.1 °C/S and fluorescence measurement) (Zhou et al, 
2010). The relative expression ratio (R) of target miRNA 
was calculated by R=2-ΔΔCt (Livak & Schmittgen, 2001; 
Bustin et al, 2009), where Ct is the cycle threshold. The 
basic equation employed was:  

target gene housekeepi ng gene experiment

target gene housekeepi ng gene cont rol

( )

( )

Ct Ct Ct

Ct Ct

   

  

The miRNA expression levels were then analyzed 
by one-way ANOVA procedures and regression analysis 
of SPSS 17.0 (SPSS inc., Chicago, USA). Duncan’s 
multiple range tests were used to compare the control (0 
h before the recovery meal) and experimental (# hours 
after refeeding) groups. The differences were 
considered statistically significant when P<0.05. Data 
are shown as means±SE (n=6). Correlation of gene 
expression was analyzed by the Spearman rank order 
correlation test. Hierarchical clustering was performed 
using Cluster3. 
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Table 1 Primers used for miRNA detection 

Name Primer Sequence (5′−3′) Name Primer Sequence (5′−3′) 

miR-1a-F TGGAATGTAAAGAAGTATGTAT miR-146-F CGTGAGAACTGAATTCCATAGATGG 

miR-133a-3p-F CGCGTTTGGTCCCCTTCA miR-133b-3p-F TTGGTCCCCTTCAACCAGCTA 

miR-206-F CGTGGAATGTAAGGAAGTGTGTGG miR-214-F ACAGCAGGCACAGACAGGCAG 

miR-181a-5p-F CGAACATTCAACGCTGTCGGT miR-26a-F CGTTCAAGTAATCCAGGATAGGCT 

β-actin-F GCCGTGACCTGACTGACTACCT β-actin-R CGCAAGACTCCATACCCAAGAAG 

Forward primers used for detection were detailed in the Methods; the reverse primer used for detection was universal downstream primer (Uni-miR qPCR 

Primer, 10 μmol/L, Takara). 

 

RESULTS 

Effect of fasting and refeeding on the expression of 
the miRNAs 

A significant up-regulation of each of the 8 
miRNAs was observed between 1-6 hours after the 
single meal (P<0.05) (Figure 1). MiR-1a was sharply up-
regulated within 1 h after refeeding and peaked at 6 h 
(Figure 1A). The expression of miR-133a-3p, miR-133b-
3p, miR-146, miR-181a-5p, miR-206 and miR-214 were 
significantly increased at 3h (P<0.05), reached the 
maximal levels at 3, 6 or 48 h postprandial (Figure 1B-
G). While miR-26a responded slowly to refeeding, it 
significantly increased at 6 h (P<0.05) and peaked at 48 
h (Figure 1F). However, miR-1a, miR-133b-3p and miR-
181a-5p significantly decreased at 12 h. All 8 miRNAs 
returned to the initial baseline values at 96 h. 

 
Heat map summary of hierarchical clustering of 
miRNAs in skeletal muscle during fasting-refeeding 
periods 

Hierarchical clustering analysis of miRNAs in 
muscle was done according to the similarity in their 
expression across different postprandial times (0-96 h). 
Hierarchical clustering of the miRNAs throughout the 
trial showed three clades (Figure 2). The first clade 
including 2 pairs of closely linked miRNAs (miR-133b-
3p and miR-133a-3p, miR-206 and miR-181a-5p) that 
clustered together. The second clade clustered miR-26a 
with miR-146 expression. 

DISCUSSION 

MicroRNAs (miRNAs) are noncoding RNA mole-
cules that regulate the stability and/or the translational 
efficiency of target mRNAs, and several miRNAs have 
been found to be specifically expressed or highly 
enriched in skeletal muscle. The expression of muscle-

specific miR-1, miR-133, miR-206, while miR-208 is 
regulated by muscle transcriptional networks involving 
SRF, MyoD and MEF2. (Flynt & Lai, 2008; Latronico et 
al, 2007; Thum et al, 2008; Van Rooij et al, 2008; Callis 
et al, 2008). Interestingly, non-muscle-specific miRNAs, 
e.g., miR-26a and miR-181, also regulate skeletal muscle 
differentiation (Wong & Tellam, 2008; Naguibneva et al, 
2006). While a great deal of attention has been paid to 
miRNAs involved in control of muscle development, a 
recent study suggests that several other miRNAs, 
including miR-499, miR-208b and miR-23a, also play an 
important role in human muscle growth (Drummond et al, 
2009). Among fish species, Huang et al (2012) previo-
usly detected differentially expressed miRNA between 2 
strains of Nile tilapia and identified miR-140, miR-192, 
miR-204, miR-218a, miR-218b, miR-301c, miR-460, 
miR-133, miR-152, miR-15a, miR-193a, miR-30b and 
miR-34 as being associated with body growth in tilapia. 

Our present study focused on exploring the potential 
role(s) of miRNAs as a new layer of control in the 
postprandial regulation of the muscle development 
among grass carp. Typically, nutrient availability is 
among the most important environmental variable 
altering muscle growth (Valente et al, 2012). As such, 
starvation and refeeding experiments have served as an 
effective model for studying the regulation of muscle 
growth in fish, including the Atlantic salmon (Salmo 
salar) (Bower et al, 2009), rainbow trout (Oncorhynchus 
mykiss) (Montserrat et al, 2007), and Atlantic halibut 
(Hippoglossus hippoglossus) (Hagen et al, 2009). 
Similarly, in humans MiRNAs turned over quite rapidly 
(i.e. hours) in skeletal muscle following amino acid 
ingestion. However, little information is available 
regarding the early transcriptional changes of miRNA 
during the postprandial period, especially among fish. 
We therefore focused on exploring the postprandial 
regulation of growth-related miRNAs shortly after  
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Figure 1 Relative expression of miRNAs with significant up-regulation following refeeding after 1 week fasting β-actin expression 
was detected as the internal control. All values are presented as mean±SE, n=6. Different letters indicate significant differences 

between columns (P<0.05).  

 
feeding a single meal in grass carp. Our results showed 
that miR-1a, miR-133a-3p, miR-133b-3p, miR-146, 
miR-181a-5p, miR-206 and miR-214 were significantly 

elevated at 1 or 3 h after refeeding in the fast muscle of 
grass carp. Drummond et al (2009) previously found a 
rapid up-regulation of the miR-1, miR-208b, miR-23a  
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Figure 2 Heat map summary of hierarchical clustering of miRNAs in skeletal muscle during fasting-refeeding periods 
Blue and yellow respectively denote a decrease or increase. The absolute signal intensity ranged from -1.82 to +1.82, with corresponding color changes from 

green to red.  

 
and miR-499 following the amino acid ingestion in 
humans. These findings suggest that the identified 
miRNAs may be promising candidate miRNAs involved 
in a fast-response signaling system that regulates fish 
skeletal muscle growth. The other finding of significant 
decreased of miR-1a, miR-133b-3p and miR-181a-5p at 
12 h after single meal suggests there may be other 
signaling pathways regulated by the miRNAs that limit 
excessive regulation of muscle growth. 

A further finding of our study was that miR-206 and 
miR-181a-5p showed a dramatic and simultaneous up-
regulation following feeding by a single meal. MiR-206 
is known to be a muscle-specific miRNA, with its role in 
muscle development having been verified in some 
animal models, including mice, rats and zebrafish 
(Anderson et al, 2006; Kim et al, 2006; Mishima et al, 
2009; Shan et al, 2009). MyoD acts as a transcriptional 
activator of the miR-206 pre-miRNA transcript, and 
subsequently the induced high levels of the mature miR-
206 result in the down-regulation of specific target 
muscle growth-related genes (Rosenberg et al, 2006). 
MiR-181 is also thought to function partly through 
inhibition of Hox-A11 expression, a known repressor of 
MyoD, which is required for new muscle growth 
(Naguibneva et al, 2006). Taken together, these different 

lines of evidence suggest that miR-181 may indirectly 
promote miR-206 expression, though some further study 
is needed. Moreover, our finding that two miRNAs 
(miR-181a-5p and miR-206) clustered together suggest a 
close relation and coordination regulation of these 
miRNAs towards resumption of myogenesis following 
refeeding.  

In conclusion, the present results show that several 
miRNAs likely involved in fast skeletal muscle in grass 
carp respond quickly to refeeding of a single meal 
following fasting. Results of our analysis indicate that 
refeeding induced a coordinated regulation of several 
miRNAs involved in a strong resumption of myogenesis, 
wherein the 8 tested miRNAs transcripts were sharply 
up-regulated in muscle tissues in response to refeeding. 
This finding suggests that these miRNAs may be 
promising candidate miRNAs involved in regulating fish 
fast muscle growth. Further study is needed to experim-
entally assess the targets of these miRNAs and elucidate 
how they contribute to the regulation of skeletal muscle 
growth during anabolic state. 
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