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New challenge for bionics—brain-inspired computing 
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By definition, bionics is the application of biological mechanisms 
found in nature to artificial systems in order to achieve specific 
functional goals. Successful examples range from Velcro, the 
touch fastener inspired by the hooks of burrs, to self-cleaning 
material, inspired by the surface of the lotus leaf. Recently, a 
new trend in bionics—Brain-Inspired Computing (BIC)—has 
captured increasing attention. Instead of learning from burrs 
and leaves, BIC aims to understand the brain and then utilize its 
operating principles to achieve powerful and efficient 
information processing. 

In the past few decades, we have witnessed dramatic 
progress in information technology. Moore’s law, which states 
that transistor density in processors doubles every two years, 
has been proven true for the last 50 years. As a result, we now 
have miniature processors in small devices (e.g., phones) that, 
in terms of numerical calculation and memory storage, easily 
dwarf the brightest human mind. Given such a condition, which 
aspects of the brain can still enlighten us? 

First, we need more energy-efficient processors. Nowadays, 
supercomputers or large data centers contain thousands of 
cores/processors, with the energy consumption rate at the 
megawatt scale. This severely limits the use of computing 
power in embedded (e.g., small, smart devices) and long 
distance (e.g., Mars rover) applications. In addition, with further 
extrapolation of Moore’s law, the energy density of a 
microprocessor will become so high that it will start to melt. In 
fact, this is an important reason why it is believed that the trend 
described by Moore’s law will come to an end, and probably 
soon. In contrast, the brain is extremely energy-efficient. With 
many capabilities that are still far beyond modern computers, 
the power of an adult brain is only about 20 watts. Therefore, to 
learn from the brain how to be “greener” is a major goal of BIC. 
With the knowledge obtained in neuroscience, we now know 
that the secret of the brain’s energy efficiency involves various 
factors, including the co-localization of data processing and 
storage, highly distributed processing, and sparse activity. 
Neuromorphic computing aims to implement these features in 
microprocessors, with electronic elements mimicking the 
activities of individual neurons and millions of artificial neurons 
interacting with each other to process information (Merolla et al., 
2014). In the most recent advance in this direction, IBM 
reported that they achieved satisfactory performance in 
complex pattern recognition tasks with a neuromorphic chip. 
Compared with conventional chips, the system reduced the 
energy consumption rate by many orders of magnitude (Esser 

et al., 2016). It is reasonable to expect that the knowledge 
learned from the brain will enable us to eventually combine 
super computing power with extremely low energy demand in 
the not-so-far-away future. 1 

The second aspect that the brain can teach us is how to 
achieve better performance in so called cognitive tasks. 
Conventional computers, no matter how powerful, know nothing 
beyond what has been written by their programmers. In addition, 
although they are superfast in crunching large datasets, they 
are incapable of solving multiple tasks that a normal person can 
handle with little effort, such as using language, understanding 
a movie, or driving a car in complex environments. The reason 
behind this capability gap lies in the different ways that 
knowledge/rules are learnt and represented in the system. In 
the brain, the huge amount of knowledge learned by our 
countless ancestors during evolution is stored in the genome 
and expressed in the neural network structure during 
development. Later, through these well-tuned, highly 
sophisticated networks, more knowledge is gained through an 
individual’s interaction with the environment, which is 
represented by hundreds of billions of synapses in the brain 
(Nikolić, 2015). In this sense, compared with the hand-coded 
programs that modern computers rely upon, the brain has a 
much greater capacity to learn and utilize complex rules 
(Baum, 2003). Equipped with a design similar to that of the 
brain and trained by algorithms that allow for highly distributed 
knowledge representation, also like that of the brain, deep 
neural networks—artificial neural networks with many layers 
of processing—have turned out to be very powerful in a 
variety of cognitive tasks, ranging from practical image and 
speech recognition to difficult game play (LeCun et al., 2015; 
Silver et al., 2016). The enthusiasm evoked by such exciting 
advances is enormous across the academic community, 
industry and even the general population. With more 
interactions between neuroscience and machine learning, we 
can be optimistic that the distance from general artificial 
intelligence, at the human level or even beyond it, will become 
increasingly shorter. 

The brain has been the object of modern neuroscience 
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research for more than a century, and artificial neuron networks 
as a tool for information processing were suggested as early as 
the 1940s. So, why is BIC attracting so much attention now? 
On the one side, experimental brain research is at the edge of 
revealing the core principle of the brain. Powerful techniques to 
monitor and manipulate neuronal activities are being rapidly 
applied to both human subjects (noninvasively) and novel animal 
models, including various nonhuman primates and genetically-
modified organisms. These studies have begun to uncover 1) the 
detailed architecture of brain networks and circuits (e.g., Fan et 
al., 2016), 2) the dynamic rules governing network operation (e.g., 
Yu et al., 2013), and 3) how network and circuit activities give rise 
to motion, perception, and cognition (e.g., Janak & Tye, 2015). 
Such studies provide a solid foundation for BIC. On the other side, 
more efficient algorithms to train artificial neural networks have 
been strengthened by powerful computers, making large, 
complex networks useful for practical purposes (Hinton & 
Salakhutdinov, 2006; LeCun et al., 2015). Thus, exciting 
advances in neuroscience and machine learning, as well as 
rapid improvement in computing power and availability of “big 
data”, have emerged almost at the same time, increasing the 
appeal and value of BIC like never before. Progress in these 
individual areas or in their synergization will no doubt be the 
perpetual driving force behind BIC. 

The design of organisms has provided inspiration for many 
ingenious and elegant solutions in engineering. Now is the time 
to turn our eyes to the pinnacle of biological evolution—the 
brain. Today, BIC is the new challenge for bionics and, in many 
ways, probably the ultimate challenge. 
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