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ABSTRACT

The discovery of antibiotics marked a golden age in
the revolution of human medicine. However,
decades later, bacterial infections remain a global
healthcare threat, and a return to the pre-antibiotic
era seems inevitable if stringent measures are not
adopted to curb the rapid emergence and spread of
multidrug resistance and the indiscriminate use of
antibiotics. In hospital settings, multidrug resistant
(MDR) pathogens, including carbapenem-resistant
Pseudomonas aeruginosa, vancomycin-resistant
enterococci (VRE), methicillin-resistant
Staphylococcus aureus (MRSA), and extended-
spectrum β-lactamases (ESBL) bearing
Acinetobacter baumannii, Escherichia coli, and
Klebsiella pneumoniae are amongst the most
problematic due to the paucity of treatment options,
increased hospital stay, and exorbitant medical
costs. Antimicrobial peptides (AMPs) provide an
excellent potential strategy for combating these
threats. Compared to empirical antibiotics, they
show low tendency to select for resistance, rapid

killing action, broad-spectrum activity, and
extraordinary clinical efficacy against several MDR
strains. Therefore, this review highlights multidrug
resistance among nosocomial bacterial pathogens
and its implications and reiterates the importance of
AMPs as next-generation antibiotics for combating
MDR superbugs.
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INTRODUCTION

A perturbing prediction by the World Health Organization
(WHO) is that by the year 2050, drug-resistant infections,
largely exacerbated by the indiscriminate use of antibiotics,
will kill 10 million people annually, ignite a financial cataclysm,
and impose extreme poverty upon millions of people (de
Kraker et al., 2016). The increasing incidence and prevalence
of antibiotic resistance among nosocomial bacterial pathogens
and the rapid spread of resistance genes in the environment
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are major global healthcare threats due to the associated
increase in morbidity and mortality and huge burden on the
economy (Aslam et al., 2018; Zaman et al., 2017).

Since the discovery of penicillin in 1928 by Alexander
Fleming, antibiotics have saved countless lives and marked
an important medical revolution in plant, animal, and human
prophylaxis. Unfortunately, the continued use of antibiotics
has been accompanied by the rapid emergence and spread of
multidrug resistant (MDR) strains and many medical
specialists are warning of an inevitable return to the pre-
antibiotic era (Adedeji, 2016). For example, bacterial genomic
analysis has revealed the presence of more than 20 000
genes associated with resistance (Liu & Pop, 2009), with a
higher number expected over the coming years. Therefore,
stringent measures are necessary to curb the spread of
resistant strains as they present a major challenge to global
public health not only in the war against microbial infections,
but also in other clinical applications such as cancer
treatment, invasive surgery, and graft transplantation (Gudiol
& Carratalà, 2014; Lupei et al., 2010).

Several factors that have been implicated in the current
upsurge of antimicrobial resistance (AMR) in hospitals and the
community, including the indiscriminate use of antibiotics in
human and animal medicine and in agricultural practices
involving growth promoters (Silveira et al., 2009; van Boeckel
et al., 2015), lack of proper regulation regarding over-the-
counter antibiotics, especially in developing countries where
they are easily available without proper medical prescription
(Ayukekbong et al., 2017), and poor sanitation practices
leading to the introduction of unmetabolized antibiotics into
the environment through human and animal waste (Davies &
Davies, 2010).

Natural selection is an inherent process and key driver of
evolution, conferring organisms with traits for increased
environmental adaptability and survival (Jesus et al., 2002).
Over the years, the widespread use of antibiotics has led to
the selection of diverse strains of microorganisms possessing
MDR traits or genes (Martínez & Baquero, 2002; Ochoa et al.,
2009). Such resistance-conferring properties, through
bacterial and genomic associations, can be easily transferred
across different ecological niches, e. g., from animals to
humans and vice versa, and from hospital settings to the
community, where they present an unprecedented crisis
(Groisman & Ochman, 1996; Kümmerer, 2004; Phillips et al.,
2004).

In bacteria, mechanisms conferring resistance to almost all
available classes of antibiotics have been studied extensively
and described in detail in previous literature (Blair et al., 2014;
Dever & Dermody, 1991; Lin et al., 2015; Lombardi et al.,
2019; Morita et al., 2012). These mechanisms include
enzymatic degradation of antibiotics, drug-target modification,
altered membrane permeability, and enhanced expression of
efflux pumps that actively eliminate antibiotics (Alanis, 2005;
Laxminarayan & Brown, 2001; Munita & Arias, 2016).

Initially associated with severe nosocomial infections in
immunocompromised patients, multidrug resistance has
spread to the wider community, resulting in severe infections

associated with growing death tolls and huge economic
burdens due to increased disability and high medical costs
(Jing et al., 2019; Peters et al., 2019). Currently, common
problematic MDR bacteria include methicillin-resistant S.
aureus (MRSA), vancomycin-resistant MRSA, MDR P.
aeruginosa, carbapenem-resistant A. baumannii, E. coli, and
K. pneumoniae, vancomycin-resistant enterococci (VRE), and
extensively drug-resistant (XDR) Mycobacterium tuberculosis
(Levin et al., 1999; Miller et al., 2005). Recent reports have
also indicated cases of bacterial strains completely resistant
to all available antibiotics. For example, the extensive use of
colistin, a drug of last resort for the treatment of MDR
pathogens such as P. aeruginosa, A. baumannii, and K.
pneumoniae in both human medicine and agriculture, has led
to the emergence of a plasmid-mediated MCR-1 gene that
encodes for its resistance (Liu et al., 2016; MacNair et al.,
2018; Paterson & Harris, 2016).

The increasing incidence of infections resulting from MDR
pathogens in clinical settings has intensified the demand for
alternative therapies. Antimicrobial peptides (AMPs) with
potent antimicrobial activities and diverse mechanisms of
action (MOA) are considered important alternatives to solving
the issues of multidrug resistance.

IMPLICATIONS OF MULTIDRUG RESISTANCE IN

NOSOCOMIAL PATHOGENS

Epidemiological surveillance data worldwide indicate that
anomalous use of antibiotics has resulted in the evolution of
several human pathogens into MDR strains that are highly
tolerant or resistant to antibiotic therapies, thus posing a
serious threat to public health (Davies & Davies, 2010; WHO,
2014). Multidrug resistance, especially in nosocomial
pathogens, is of great clinical concern due to the increased
morbidity and mortality and enhanced virulence and
transmissibility (Bhat et al., 2006; Khan et al., 2017). Such
pathogens are implicated in severe infections such as
ventilator-associated pneumonia (Koenig & Truwit, 2006) as
well as bloodstream (Martinez & Wolk, 2016), surgical site
(Anderson, 2011), and implant-associated urinary tract
infections (Nicolle, 2014). These infections occur often and
are severe in immunocompromised patients, although recent
evidence also suggests the spread of MDR genes into the
general community (Khan et al., 2017).

For gram-negative nosocomial pathogens, especially A.
baumannii, P. aeruginosa, K. pneumoniae, S. aureus, and
Enterobacter spp., the emergence of multidrug resistance to
several available classes of antibiotics, such as penicillins,
aminoglycosides, cephalosporins, and fluoroquinolones, has
increased over the years as a result of extensive use,
especially in intensive care units (Richard et al., 1994;
Struelens, 1998). In many cases, these MDR strains show
reduced susceptibility to all available antibiotic therapies and
are implicated in serious high mortality rate-nosocomial
infections (Hirsch & Tam, 2010; Manchanda et al., 2010).
Colistin, an AMP consisting of two polypeptides (polymyxin A

489



www.zoores.ac.cn

and B), is often used as a drug of last resort for MDR strains,
notwithstanding its adverse side effects such as nephrotoxicity
and neurotoxicity, due to the paucity of treatment options
(Falagas et al., 2005; Yamamoto et al., 2018). However,
current reports indicate the emergence of MDR strains that
exhibit reduced susceptibility to colistin following long-term
clinical or laboratory exposure (Jeannot et al., 2017).
Resistance to colistin is attributed to the presence of the MCR-
1 gene, which is highly transmissible across different bacterial
strains and has been isolated from strains on hospital
surfaces and in animal and clinical human samples
(Yamamoto et al., 2018). These strains also exhibit low
susceptibility to almost all other antibiotics, including those
designated as "last-resort" such as polymyxins (colistin) and
carbapenems, thus raising a new crisis in the war against
multidrug resistance (Liu et al., 2016; Rapoport et al., 2016;
Yamamoto et al., 2018).

Gram-positive S. aureus is another important nosocomial
pathogen and is transmitted through direct contact with
contaminated surfaces, clinical waste, open wounds, and
clinical staff (Denis, 2017; Price et al., 2017). It is a major
cause of skin infections, sepsis, and pneumonia in
hospitalized patients, with recent data indicating increased
incidences of community-acquired S. aureus infections due to
improper disposal of hospital waste, poor hygiene, and the
spread of resistant genes to the community (Dotel et al.,
2017). The rising incidence of MRSA infections is a growing
healthcare threat associated with increased mortality rates in
hospitals and the community (Othman et al., 2019).
Additionally, most MRSA strains exhibit resistance to all other
antibiotics, including the beta-lactams, and recent reports
indicate the emergence and spread of strains with reduced
susceptibility to glycopeptide compounds such as vancomycin
(vancomycin-resistant MRSA), therefore making treatment
almost impossible (Bhat et al., 2006; Centers for Disease &
Prevention, 1997; Othman et al., 2019).

Over the past few years, enterococci, which are normal flora
of the gut and genital tract, have become problematic
nosocomial pathogens and a growing clinical predicament.
This trend is concomitant with their inherent resistance to
several commonly used drugs, including penicillin, ampicillin,
cephalosporin, and clindamycin (Gold & Moellering, 1996). In
addition to inherently acquired resistance, enterococci can
rapidly acquire resistance to virtually any antibiotic either
through rapid mutation or the acquisition of foreign genetic
material, thus expressing a repertory of resistance
mechanisms to antibiotics such as enhanced expression of
efflux pumps, modification of drug targets, and enzymatic
degradation of drug agents (Linden, 2002). MDR enterococci
exhibit high adaptability under antibiotic pressure and can
rapidly acquire resistant genes to enhance their survival. One
notable example is the rapid transfer of resistant genes
associated with the extensive use of vancomycin among
several strains of enterococci, especially Enterococcus
faecalis and Enterococcus faecium, two important nosocomial
pathogens (Arias & Murray, 2012). Resistance to vancomycin
presents a major clinical crisis as most of these strains are

also resistant to most other antibiotics and the transfer of
vancomycin-resistant genes can occur from enterococci
strains to even more lethal pathogens such as MRSA,
therefore leaving very few or no therapeutic options (Chang et
al., 2003; Franchi et al., 1999; Noble et al., 1992).

Bacterial biofilms are of great clinical significance to global
healthcare due to their important role in nosocomial and
implant-related infections. Most nosocomial pathogens
produce biofilms, which complement disease pathogenicity
and resistance (Dunne, 2002; Gurung et al., 2013). Biofilm-
producing organisms such as A. baumannii and P. aeruginosa
exhibit extreme resistance to almost all antibiotics compared
with non-biofilm-producing microorganisms. Biofilms form a
protective coating around bacterial cells, thus hindering the
killing action of antibiotics (Stewart, 2002). Other factors that
contribute to resistance in biofilm-producing organisms
include the formation of persister cells (dormant and highly
resilient to almost all available antibiotics), slow bacterial
growth within the biofilm, and adaptability to stressful
conditions (Keren et al., 2012; Lewis, 2008).

Multidrug resistance to useful classes of antibiotics has
increased gradually among several bacterial nosocomial
pathogens. Thus, great efforts have been expended on the
discovery of novel antibiotic alternative therapies. Currently,
several AMPs with potent efficacy are under clinical trial and
present excellent mitigation strategies for the multidrug
resistance crisis (de Breij et al., 2018; Koo & Seo, 2019;
Stefania et al., 2015). Moreover, compared with traditional
antibiotics, AMPs possess many important qualities that make
them excellent candidates for therapeutic exploitation. For
instance, AMPs are multifunctional with diverse MOA,
including membrane disruption, inhibition of DNA and protein
synthesis, and impairment of key cellular processes such as
metabolism and cell wall synthesis (Kumar et al., 2018; Tzong-
Hsien et al., 2016; Wimley, 2010). Their diverse MOA are
important as they minimize the tendency of pathogens to
select for resistance, as observed in most conventional
antibiotics that only act on single targets unless used in
combination (Alanis, 2005; Bechinger & Gorr, 2017).
Moreover, most AMPs exhibit potent antimicrobial properties
against both gram-negative and gram-positive bacteria, fungi,
and viruses in the nanomolar and micromolar range (Frecer et
al., 2004; Wakabayashi et al., 1996; Yamauchi et al., 1993),
rapidly kill pathogens within minutes, and have a low proclivity
to select for resistance compared with conventional antibiotics
(de Breij et al., 2018; Nagarajan et al., 2019).

AMPs: ORIGIN AND PROSPECTS

AMPs or host defense peptides are a notably class of
compounds of the innate immune system with both
microbicidal and immunomodulatory activities, providing a first
line of defense against pathogenic invasion (Falanga &
Galdiero, 2018; Kang et al., 2017; Pasupuleti et al., 2012).
AMPs are polypeptides of varying molecular weight and
amino acid residues (ranging from five to over 100) and are
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found in virtually all living organisms, from simple prokaryotes
to complex eukaryotes (Figure 1). They play important roles in
the direct killing of infectious agents, viruses, bacteria, fungi,
and parasites and through the modulation of immune
processes such as activation and recruitment of immune cells,
wound healing, angiogenesis, and inflammation (Haney &
Hancock, 2013; Kumar et al., 2018; Maróti et al., 2011;
Oppenheim et al., 2003; Zhao et al., 2013).

In most organisms, high concentrations of AMPs are
expressed on surfaces that are constantly exposed to
pathogens. For example, the mucosal lining and skin of
vertebrates display broad-spectrum antimicrobial activities
(Brogden et al., 2003; Rinaldi., 2002). In general, AMPs are
either produced continuously or up-regulated following
exposure to a threat (Ganz, 2003). For example, human skin
is continuously protected by an abundance of psoriasin,
dermcidin, and lactoferrin, with cathelicidin LL-37 also up-
regulated following infection (Harder et al., 2013). In bacteria,
AMPs play an important role in enhancing adaptability and
survival during antagonistic competition for resources with
other bacteria occupying the same ecological niche (Kumar et
al., 2018). Several peptides with potential therapeutic activity
have been isolated from bacteria and demonstrate potent
antimicrobial activities against both gram-negative and gram-
positive bacteria and even fungi. These AMPs are known as
bacteriocins and play important roles in inhibiting or killing
antagonistic bacterial strains with no self-harm, thus
conferring a critical survival strategy (Yang et al., 2014).
Bacteriocins provide important prospects for the development
of alternative antibiotic strategies against different bacterial
pathogens and are also useful in the food industry as
preservatives (Mills et al., 2011; Silva et al., 2018). Bacteria-
derived AMPs include nisin, a 34-amino acid residue peptide
and an important food preservative isolated from Lactococcus
lactis (Tong et al., 2014), and colistin, isolated from
Paenibacillus polymyxa and used extensively in agriculture
and human prophylaxis (Poirel et al., 2017). Colistin is an
important last-resort peptide drug used against several MDR
nosocomial pathogens such as MRSA, MDR P. aeruginosa,
and carbapenem-resistant pathogens, although its use is
somewhat limited due to its side effects (Falagas et al., 2005;

Levin et al., 1999; MacNair et al., 2018).
In vertebrates, AMPs can directly kill microorganisms and

play a role in immunomodulation through the activation and
recruitment of immune cells during infection (Kumar et al.,
2018; Mahlapuu et al., 2016). Several different classes of
AMPs, such as cathelicidins and defensins, have been
isolated and characterized from immune cells, bodily
secretions, and epithelial tissues of amphibians and marine
and terrestrial animals (Lu et al., 2008; Wang et al., 2016). For
example, several AMPs have been identified from amphibian
skins, where they are produced in glands of the dermal skin
layer and released following pathogenic exposure, inducing a
microbicidal action through membrane disruption (Rollins-
Smith et al., 2005; Woodhams et al., 2007). In humans,
psoriasin, dermcidin, and lactoferrin are continuously secreted
by the sweat glands to form an important barrier against
infection, and cathelicidin LL-37 is secreted following microbial
introduction (Harder et al., 2013). Nearly 30 cathelicidins have
been characterized from domestic and wild mammals
(Kościuczuk et al., 2012), and are stored as inactive
precursors in neutrophil granules and activated following
microbial exposure (Treffers et al., 2005). Apart from
cathelicidins, several other classes of antimicrobial peptides
have been isolated and identified in vertebrates (Brogden et
al., 2003; Zhang, 2006; Zhang et al., 2008). These AMPs have
diverse MOA and play multifunctional roles, including
modulation of immune responses, prevention of excessive
tissue damage, alleviation of inflammation, and destruction of
invading pathogens to mitigate infection onset (Haney &
Hancock, 2013; Maróti et al., 2011; Oppenheim et al., 2003).

Several vertebrate AMPs show excellent therapeutic
potential due to their antibacterial, antiviral, antifungal, and
anti-inflammatory properties (Oppenheim et al., 2003; Qi et
al., 2019), whereas others show improved clinical efficacy,
structural stability, and potent antimicrobial activity against
several MDR pathogens following modification (Kumar et al.,
2018; Schmidtchen et al., 2014; Zhang et al., 2019).

In contrast to vertebrates, insects and plants lack an
adaptive immune system, relying entirely on the innate
immune system for defensive purposes, with AMPs playing a
pivotal role in the protection against invading pathogens.
Several AMPs have been isolated and analyzed from the
epithelial cells, hemocytes, and hemolymphs of insects
(Brown et al., 2009; Hancock et al., 2006; Philippe & Reto,
2005). Peptides isolated from insects are usually cationic and
kill bacteria through permeabilizing bacterial membranes, and
further possess potent microbicidal activity either singly or
synergistically with traditional antibiotics (Yi et al., 2014).
Notable examples of insect-based AMPs include cecropins,
defensins, drosocins, and diptericins, which exhibit activities
against both gram-negative and gram-positive bacteria as well
as fungi (Mylonakis et al., 2016; Rozgonyi et al., 2009; Wu et
al., 2018; Zhang & Gallo, 2016).

AMPs also play important defensive roles in plants (which
also lack an innate immune system). Several peptides have
been isolated and characterized from the leaves, roots, seeds,
and tubers of plants (Tam et al., 2015). Generally, they exhibit

Figure 1 Number of natural and synthetic antimicrobial peptides

from different kingdoms (total 3 011) as of July 2019

Data obtained from antimicrobial peptide database http://aps. unmc.

edu/AP/ (Wang et al., 2016).

491



www.zoores.ac.cn

high proteolytic, thermal, and chemical stability due to the
presence of multiple disulfide bonds conserved within their
rich cysteine residues (Hammami et al., 2009; Hilchie et al.,
2013; Stotz et al., 2009; Tam et al., 2015). Plant AMPs have
been extensively studied and discussed (Craik, 2012;
Hammami et al., 2009; Nawrot et al., 2014; Stec, 2006). Much
like AMPs from vertebrates, plant-based AMPs confer
protection against invading pathogens through membrane
disruption and pore formation and by targeting key microbial
processes such as DNA and protein synthesis (Nawrot et al.,
2014). Notable examples of plant AMPs include plant
defensins and thionins (Hilchie et al., 2013; Stotz et al., 2009).
Plant defensins are small cationic peptides with 45–55 amino
acid residues and exhibit potent antibacterial and fungal
activities (Gao et al., 2000; Tavares et al., 2008). Thionins are
cationic peptides with 45–48 amino acid residues and three or
four disulfide bonds (Stec, 2006). They exhibit potent activities
against bacteria and fungi and cytotoxicity on animal cells
(Evans et al., 1989; Fernandez De Caleya et al., 1972).

Used singly or in combination with traditional therapeutics,
AMPs are quite effective at combating infectious agents,
including MDR bacteria. They exhibit potent microbicidal
activity in the micromolar range, rapid killing action, and low
selection of resistance, thus constituting an important strategy
for curbing MDR pathogens (Deslouches & Di, 2017; Loeffler
et al., 2001; van't Hof et al., 2001). In contrast to empirical
antibiotics that target single or specific bacterial processes,
AMPs exhibit multifunctional bacterial killing effects, including
disruption of the plasma membrane, and also target microbial
intracellular processes, including inhibition of transcription and
translation, protein synthesis, and bacterial cell wall formation
(Gee et al., 2013; Hurdle et al., 2011; Reddy et al., 2004).

Presently, much effort is being directed toward obtaining
novel antimicrobial agents with broad-spectrum activity
against pathogenic microorganisms. Naturally occurring AMPs
have proven to be invaluable templates for the design and
synthesis of synthetic AMPs with increased potency, which are
easier to produce and less sensitive to proteolytic degradation
(Falanga et al., 2016; Hurdle et al., 2011).

CLASSIFICATION AND STRUCTURE OF AMPs

With more than 3 000 sequences reported to date, AMPs are
often classified based on their secondary structures and MOA.
Based on structure, the three currently established classes
include α-helical, β-sheet, and extended-coiled peptides
(Figure 2) (Falanga & Galdiero, 2018; Lombardi et al., 2019).
The α-helical AMPs are unordered in aqueous solution but
once in contact with a biological membrane, they assume an
amphipathic α-helical structure (Kumar et al., 2018). Important
α-helical AMPs include magainin, a 23-amino acid residue
peptide isolated from the skin of the African clawed frog
(Xenopus laevis), which exhibits highly potent tumoricidal and
broad-spectrum antimicrobial activities against bacteria, fungi,
and protozoa due to membrane disruption (Matsuzaki, 1999;
Zerweck et al., 2017). The cathelicidin family of AMPs are also

important members of this group and are found widely in
nature in all vertebrates (Kościuczuk et al., 2012). For
example, LL-37, a prominent cathelicidin in humans, exhibits
broad-spectrum microbicidal activities against gram-positive
and gram-negative bacteria by plasma-membrane disruption
(Björstad et al., 2009). LL-37 has been extensively studied
and used as a template for the design of several synthetic
AMPs, many of which are currently under clinical trial (de Breij
et al., 2018; Dürr et al., 2006; Kościuczuk et al., 2012). Other
α-helical AMPs include aurein from the granular dorsal glands
of the frog Litoria aurea (Rai & Qian, 2017), melittin from
honey-bee venom, and cecropin derived from the hemolymph
of Hyalophora cecropia (Yi et al., 2014).

The β-sheet peptides, which constitute the largest group of
AMPs, are produced in many organisms such as marine
invertebrates, amphibians, plants, and animals (Haney &
Hancock, 2013; Maróti et al., 2011; Oppenheim et al., 2003;
Wang et al., 2016) and show both antibacterial and antifungal
properties (Harwig et al., 1996). In contrast to α-helical
peptides, these peptides are ordered in aqueous solution and
contain conserved cysteine residues that form disulfide bonds
that enhance structural stability and minimize proteolytic
degradation (Tzong-Hsien et al., 2016). They exhibit
boundless therapeutic prospects, e. g., as antifungal,
antibacterial, antiviral, and anti-inflammatory agents, and
primarily kill bacteria through plasma-membrane disruption
(Kumar et al., 2018; Panteleev et al., 2015). Prominent
members of this family include defensins, protegrins, and
tachyplesins. Defensins are found in plants, invertebrates, and
vertebrates and exhibit activity against both gram-positive and
gram-negative bacteria, fungi, and viruses (Panteleev et al.,
2015; Yamaguchi & Ouchi, 2012). Tachyplesins, a class of
peptides isolated from hemocytes of the horseshoe crab,
exhibit strong microbicidal activity, although their use is
hampered by their potential toxicity to mammalian cells
(Edwards et al., 2017; Liu et al., 2018; Miyata et al., 1989).

The third class of AMPs include those with an extended-coil
structure. These AMPs lack secondary structures present in
other AMPs such as α helices and β sheets and mostly
consist of specific amino acid residues including arginine
(Arg), proline, or tryptophan (Mahlapuu et al., 2016). They
exhibit broad-spectrum activity against gram-negative bacteria
via membrane disruption and targeting internal processes and
also possess antitumor activity (Falla et al., 1996). Important
extended-coil AMPs include indolicidin, a 13-amino acid
peptide produced by bovine leukocytes that shows potent
antimicrobial activity (Falla et al., 1996), as well as tritrpticin
(Yang et al., 2002) and human salivary histatin (Du et al.,
2017).

MECHANISM OF ACTION (MOA) OF AMPs

For AMPs, there is strong evidence suggesting a close
correlation between their MOA and physical features or
primary structure, which are characterized by a net positive
charge and hydrophobicity (Figure 2) (Dathe & Wieprecht,
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1999; Matsuzaki, 1999). The cationic charge influenced by
amino acid residues such as Arg and lysine (Lys) enhances
selectivity for negatively charged bacterial plasma membranes
while exhibiting low electrostatic interactions with the
uncharged outer layer of the eukaryotic cell membrane
(Guilhelmelli et al., 2013). Current efforts at improving the
selectivity for and electrostatic interaction of AMPs with
bacterial membranes involve the substitution of amino acids
with positively charged amino acid residues like Arg and Lys
(Arias et al., 2018; Yeaman & Yount, 2003). For example, Jin
et al. (2016) reported that substitution of amino acids
improved antimicrobial efficacy, increased stability, and
reduced the hemolytic activity of the designed peptide ZY13
compared to its precursor peptide cathelicidin-BF15.

Previous studies have also indicated a strong correlation
between the cationic charge of an AMP and its antimicrobial
activity, with data showing improved antimicrobial activity of
several AMPs against both bacterial and fungal pathogens
paralleled with an increase in cationic charge (Gagnon et al.,
2017; Hong et al., 2001; Lyu et al., 2016); however, increased
hemolytic activity has been observed for several AMPs
following an increase in net charge (Chen et al., 2005; Jiang
et al., 2008). Secondly, hydrophobicity is an important
parameter of all AMPs and is attributed to a substantial
proportion (almost 50%) of hydrophobic residues in peptide
sequences, such as leucine, valine, isoleucine, alanine,
methionine, tyrosine, tryptophan, and phenylalanine.

Hydrophobicity is crucial for peptide selectivity to biological
membranes and increased hydrophobicity is correlated with
increased hemolytic activity as highly hydrophobic AMPs
have a stronger ability to penetrate the hydrophobic core of
erythrocyte membranes (Chen et al., 2007; Tachi et al.,
2002).

Understanding the MOA of AMPs is paramount for
unlocking their full potential as next-generation antibiotics.
Extensive research has been conducted, and is still ongoing,
to unveil the MOA of AMPs (Guilhelmelli et al., 2013; Hancock
& Lehrer, 1998; Ulm et al., 2012). Based on their MOA, AMPs
can be classified into those that kill through membrane
disruptive mechanisms and non-membrane disruptive
mechanisms, as illustrated in Figure 3. For the membrane
disruptive killing action, AMPs produce microbicidal activity by
targeting and disrupting the bacterial plasma-membrane
structure, mostly through permeabilization, thus resulting in
leakage of intracellular content (Huang et al., 2010). An
important aspect to consider for this MOA is the concentration
threshold of peptide molecules on the bacterial membrane
surface for effective permeabilization via interaction of
positively charged AMP residues with negatively charged
moieties on the bacterial membrane surface (Chen et al.,
2007; Shai, 2002). To drive this membrane disruptive MOA,
three models have been postulated, i.e., barrel-stave, carpet-
like, and toroidal pore models. For all models, the MOA begins
with the accumulation and organization of AMP molecules

Figure 2 Structural diversity and helical wheel projections of representative AMPs

A: α-helical-magainin (PDB ID 2LSA). B: β-sheet-chicken ovo-defensin (PDB ID 2MJK). C: Extended coil-tritrpticin. Images were created with

Protein Data Bank (PDP) (Bioinformaticsdoi:10.1093/bioinformatics/bty419) (Rose et al., 2018) and visualized with Jmol software. D: Helical

wheel projections of four representative peptides showing physical properties canonical to all AMPs, including distribution of amino acid residues,

net charge, and hydrophobicity established to correlate with antimicrobial activity, selectivity, and cytotoxicity. Positively charged residues (polar) are

represented as blue circles and hydrophobic (nonpolar) residues are yellow circles. Wheels projections, net charge, and hydrophobicity of AMPs

were generated with HeliQuest webserver (http://heliquest.ipmc. cnrs.fr/).
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parallel to the membrane surface, followed by electrostatic
interaction between the AMPs' cationic charged residues and
negatively charged phospholipids on the membrane surface
(Falanga et al., 2016).

Typical for α-helical AMPs, the barrel-stave model
constitutes the formation of hydrophilic pores on the
hydrophobic core of the bacteria membrane structure,
resulting in membrane disruption and leakage of extracellular
content (Kumar et al., 2018). For the carpet-like mechanism,
peptide molecules accumulate parallel to the membrane
surface in a carpet-like fashion, followed by penetration into
the membrane and disruption of the lipid bilayer (Brogden,
2005; Falanga et al., 2016; Rodríguez-Vázquez et al., 2014).
In contrast, toroidal pore models, e. g., magainin peptide,
cause membrane disruption by perpendicular insertion into
the lipid bilayer (Shai, 2002; Wimley, 2010).

Direct killing through non-membrane disruptive mechanisms
involves targeting microbial processes or physiological
functions other than the cell membrane, utilizing similar killing
mechanisms as those by conventional antibiotics such as
inhibition of cell wall, protein, and DNA synthesis and reduced
enzymatic activity (Hancock & Rozek, 2002; Hancock & Sahl,
2006). Firstly, the AMP interacts with the plasma membrane
before penetrating with or without membrane permeabilization
(e. g., activity of buforin II on E. coli) and accumulating
intracellularly, where it targets and acts on key processes
such as transcription and translation, protein synthesis,
enzymatic activity, and microbial death (Brogden, 2005; Park
et al., 1998). For example, human α-defensin 1, human α-
defensin 5, human β-defensin 4, and indolicidin all have
intracellular targets (Falla et al., 1996; Lehrer et al., 1989;
Sharma & Nagaraj, 2015).

In addition to direct microbial killing, AMPs are required for
other immunomodulatory functions. They are secreted by a

wide range of immune cells, including phagocytes,
neutrophils, and macrophages, and are involved in the
mitigation of infection such as controlled secretion of
proinflammatory cytokines to prevent cytokine storm and
tissue damage, recruitment and activation of immune cells,
promotion of angiogenesis, and suppression of excessive
reactive oxygen species release (Hancock et al., 2012; Hilchie
et al., 2013; Nicole et al., 2012; Nijnik & Hancock, 2009). For
example, human cathelicidin LL-37 exhibits
immunomodulation properties such as chemoattraction and
activation of various immune cells such as monocytes,
neutrophils, and mast cells by using formyl peptide receptor-
like 1 (De et al., 2000; Nijnik & Hancock, 2009). A thorough
understanding of the antimicrobial and immunomodulatory
properties of AMPs provides excellent opportunities for the
discovery and design of novel therapies for bacterial infection
as well as inflammatory and cardiovascular diseases such as
atherosclerosis and thrombosis (Bei et al., 2019; Zhang et al.,
2015).

ACTIVITY OF AMPs AGAINST MDR NOSOCOMIAL

BACTERIAL PATHOGENS

The rapid spread of antibiotic resistance presents a daunting
clinical challenge due to the recalcitrance of pathogens to
traditional antibiotics, especially among nosocomial
pathogens. In both developing and developed countries,
hospital-acquired infections, commonly referred to as
nosocomial infections, are a growing concern often associated
with prolonged hospital stay, increased mortality rates, and
huge economic burden. Therefore, the discovery of novel
alternative therapies is paramount. Several AMPs have been
found to show potent microbicidal activity in the micromolar

Figure 3 Schematic of membrane disruptive and non-membrane disruptive bacterial killing mechanisms of AMPs

Illustration created with BIORENDER.COM.
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range against several bacteria strains, with a low likelihood for
selection of resistance, therefore creating hope in the war
against MDR pathogens (Deslouches & Di, 2017; Loeffler et
al., 2001; van't Hof et al., 2001).

Natural and synthetic peptides have proven to be effective
in combating several pathogens, including MDR gram-positive
and gram-negative bacteria (see Table 1), with continued
effort aimed at designing peptides with improved therapeutic

potential and reduced side effects (Chou et al., 2008; Liu et
al., 2015). Such strategies have focused on improving
efficacy, structural stability, and protection from proteolytic
degradation, and include chemical modifications such as
acetylation, enrichment with non-natural D-amino acids,
substitution of amino acid residues, and use of delivery
systems (Nordström & Malmsten, 2017; Zhang et al., 2019;
Zhao et al., 2016).

Cathelicidin AMPs, which are found in humans and other
animals, are excellent candidates for therapeutic agents. They
display multifunctional roles, including potent broad-spectrum
antimicrobial activity against infectious agents such as fungi,
viruses, and bacteria, and can trigger specific immune
responses such as activation and recruitment of immune cells
(Gennaro et al., 1989; Kościuczuk et al., 2012). The human
cathelicidin LL-37, expressed in various tissues and
circulating cells, is the most extensively studied peptide and
exhibits potent bactericidal activity against bacterial strains
and fungi (Björstad et al., 2009). Furthermore, it has been

used as a template for the design of several synthetic
peptides with improved antibiotic activity against nosocomial
pathogens, biofilms, and persister cells (Dürr et al., 2006;
Xhindoli et al., 2016). A notable LL-37 derivative (SAAP-148)
designed by de Breij et al. (2018) through amino acid
substitution of the C-terminal chain of LL-37 shows potent
microbicidal activity (minimum inhibitory concentration (MIC)
0.4 to 12.8 µm) against several ESKAPE pathogens (e.g., E.
faecium, S. aureus, K. pneumoniae, A. baumannii, P.
aeruginosa, and Enterobacter species) without selection of
resistance. This derivative can also eliminate biofilms and

Table 1 Select antimicrobial peptides with potent activity against MDR pathogens

Peptide

Human LL-37

SAAP-148 (de
Breij et al., 2018)

Cathelicidin-BF
(Wang et al., 2008)

D-OH-CATH30
(Zhao et al., 2018)

Indolicidin
(Falla et al., 1996)

Omiganan (Melo &
Castanho, 2007)

Ci-MAM-A24 (Fed-
ders et al., 2010)

Pexiganan
(Ge et al., 1999)

S-thanatin
(Wu et al., 2011)

AA139 (van der
Weide et al., 2019)

SET-M33 (Van De
Weide et al., 2019)

EC-hepcidin3

Tachyplesin-1
(Ohta et al., 1992)

Sequence

LLGDFFRKSKEKIGKE-
FKRIVQRIKDFLRNLVPRTES

LKRVWKRVFKLLKRY-
WRQLKKPVR

KFFRKLKKSVKKRAKEFFK-
KPRVIGVSIPF

KFFKKLKNSVKKRAKKFFK-
KPRVIGVSIPF

ILPWKWPWWPWRR

ILRWPWWPWRRK-NH2

WRSLGRTLLRLSHALK-
PLARRSGW-NH2

GIGKFLKKAKKFGKAF-
VKILKK-NH2

GSKKPVPIIYCNRRSGKC-
QRM

GFCWYVCARRNGARVCYR-
RCN

KKIRVRLSA)4K2KβΑ-ΟΗ

APAKCTPYCYPTHDGVFC-
GVRCDFQ

KWCFRVCYRG ICYRRCR

Development phase

Preclinical

Preclinical

III

III

Preclinical

III

Preclinical

Preclinical

Preclinical

Preclinical

II

Description

From human leucocytes, kills bacteria through pore formation and pos-
sesses immunomodulation activities.

LL-37 derivative, shows potent bactericidal activity through membrane
permeabilization and wound healing activity.

Lysine-phenylalanine-rich peptide from snake venom. Shows potent ef-
ficacy against fungal and bacterial strains including MDR pathogens.
Low hemolytic activity.

Cathelicidin from snake venom, rapidly kills MDR gram-positive and
gram-negative pathogens, with low hemolytic activity and in vivo toxicity.

Isolated from bovine leucocytes, shows potent bactericidal activity
through pore formation.

Indolicidin derivative, broad-spectrum antimicrobial activity, therapeutic
agent against acne and catheter related infections.

Isolated from Ciona intestinalis, shows potent bactericidal activity
against MRSA, VRE, and MDR P. aeruginosa through pore formation.

Magainin analog, phase III clinical trials for treatment of bacterial infec-
tions and diabetic foot ulcers. Potent antimicrobial activity.

Thanatin derivative, shows improved antimicrobial activity with reduced
hemolytic activity. Potently inhibits gram-negative growth in vitro and in
vivo and alleviates sepsis in mice.

Analog of arenicin-3 with β-hairpin structure, exhibits potent microbici-
dal activity against MDR gram-negative pathogens, and excellent can-
didate for in vivo application.

Synthetic tetra-branched peptide with potent microbicidal activity
against MDR bacteria and in vivo therapeutic potential. Currently under
development for treatment of sepsis and lung infections (Brunetti et al.,
2016a).

Cysteine-rich peptide cloned from marine fish. Potent microbicidal ac-
tivity against S. aureus and Pseudomonas spp.

Cationic β-hairpin peptide from horseshoe crab. Potent microbicidal ac-
tivity against gram-negative and gram-positive bacteria. Use limited by
high cytotoxicity.
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persister cells of S. aureus, A. baumannii and P. aeruginosa in
the micromolar range.

Cathelicidins make up the bulk of naturally occurring AMPs
in snake venom. Several snake venom-based AMPs have
been established, which potently kill both fungal and bacterial
pathogens (Jin et al., 2016; Wang et al., 2011; Zhang, 2015).
Zhao et al. (2018) identified a novel 34-amino acid residue
cathelicidin (OH-CATH) from the king cobra, with its analog D-
OH-CATH30 found to exhibit potent microbicidal activity (MIC
1.56 to 12.5 µg/mL) against several gram-negative and gram-
positive bacteria, including MDR A. baumannii, MDR P.
aeruginosa, MRSA, and E. coli, compared to nine commonly
used antibiotics. Remarkably, bacteria-killing kinetics revealed
that D-OH-CATH30 rapidly killed E. coli within 6 min and
exhibited low hemolytic activity on red blood cells at high
concentration. Furthermore, in vivo toxicity testing using mice
revealed a high lethal dose, with no deaths observed at high
concentrations of 160 mg/kg (Li et al., 2012; Zhao et al.,
2018), thus highlighting their potential as excellent therapeutic
candidates.

Cathelicidin-BF is a 30-amino acid residue cathelicidin
isolated from the venom of Bungarus fasciatus and possesses
potent antimicrobial activity, even against MDR clinical
isolates (Wang et al. 2008). Its designed and shortened 15-
amino acid residue peptide cathelicidin-BF15 also shows
strong efficacy against fungal species such as Candida
albicans (Jin et al., 2016; Wang et al., 2008) and against
several bacterial strains including MDR clinical isolates of E.
coli, P. aeruginosa, and S. aureus through membrane
permeabilization (Wang et al., 2008), with low hemolytic
activity on red blood cells and therapeutic potential against
acne vulgaris (Wang et al., 2011).

Several AMPs with potent antimicrobial properties have also
been isolated from amphibians such as salamanders, frogs,
and toads (Patocka et al., 2018; Liu et al., 2011; Xiao et al.,
2011). Such peptides are viable targets for the development of
therapeutic agents. For example, Qi et al., (2019) identified
two novel cathelicidin peptides, OL-CATH-1 and -2, from the
frog Odorrana livida, which both show potent antimicrobial
and anti-inflammatory activities. Wang et al. (2013) isolated
five novel AMPs from Limnonectes kuhlii frog skin secretions,
which exhibited potent antimicrobial activity against several
gram-negative and gram-positive bacterial strains, but with
low hemolytic activity on mammalian cells.

Other extensively studied cathelicidins include human- β
defensin 3 (hBD-3), sheep myeloid peptide (AMP-29), rat
cathelin-related antimicrobial peptide (rCRAMP), and bovine
myeloid antimicrobial peptide 27 (BMAP-27), which
demonstrate potent microbicidal activity against pathogenic
strains such as E. coli, P. aeruginosa, MRSA, and A.
baumannii, inhibition of biofilm formation, and
immunomodulation activity (Dhople et al., 2006; Giacometti et
al., 2004; Guo et al., 2018; Kościuczuk et al., 2012; Kurosaka
et al., 2005).

Besides cathelicidins, other AMPs with diverse structural
scaffolds and properties have been reported. Indolicidin, a
natural cationic peptide from bovine neutrophils, also exhibits

potent bactericidal activity through membrane
permeabilization against gram-negative and gram-positive
nosocomial pathogens such as E. coli, P. aeruginosa, and S.
aureus (Falla et al., 1996). Several synthesized derivates of
indolicidin have shown improved antimicrobial activities
against a wide panel of MDR nosocomial pathogens with low
MIC values, e.g., RN7-IN10 and RN7-IN9 (Jindal et al., 2015).
Omiganan, a novel peptide currently under phase III clinical
trials as a therapeutic agent for bacterial-caused acne and
catheter-associated bloodstream infection (Melo & Castanho,
2007), also exhibits potent broad-spectrum antimicrobial
activity (Sader et al., 2004).

Also currently under preclinical trial, Ci-MAM-A24, a
synthetic peptide derivative of a peptide precursor isolated
from Ciona intestinalis, exhibits potent bactericidal activity
through membrane permeabilization at low concentration (MIC
<10 µg/mL) against MDR nosocomial pathogens, including
MRSA, VRE, MDR P. aeruginosa, ESBL-producing E. coli
(Fedders et al., 2010). Thus, it is an important candidate as a
therapeutic agent against MDR nosocomial pathogens. The
pexiganan peptide, a synthetic 22-amino acid residue analog
of magainin isolated from the African clawed frog Xenopus
laevis (Ge et al., 1999; Zasloff, 1987), also exhibits potent
broad-spectrum bactericidal activity against several
pathogens at low concentration. It is currently in phase III
clinical trials as an agent for diabetic foot ulcers caused by
bacterial infections and can rapidly kill pathogens such as P.
aeruginosa and several other gram-positive and gram-
negative bacteria, with a low tendency to induce resistance
selection (Ge et al., 1999; Mahlapuu et al., 2016). However,
several reports demonstrate selection of resistance to
pexiganan following long-term laboratory exposure of
pathogens (Habets & Brockhurst, 2012; Perron et al., 2006).

Thanatin is another potential therapeutic candidate for MDR
pathogens. It is a 21-amino acid residue peptide and its
analog, S-thanatin, exhibits low hemolytic activity and potent
antimicrobial activity against several strains of gram-negative
and gram-positive bacteria (Wu et al., 2011). Furthermore,
with improved therapeutic activity, S-thanatin shows potent
activity against nosocomial pathogens K. pneumoniae and E.
coli at very low concentrations, and can alleviate sepsis in
mice models, thus making it an excellent therapeutic
candidate (Ding et al., 2009; Wu et al., 2013).

Colistin is an important AMP used as a last-resort drug for
the treatment of MDR pathogen infections. Recent reports of
selection of resistance to colistin thus present a concerning
global healthcare predicament in the fight against MDR
bacterial infections (Falagas et al., 2005; MacNair et al., 2018;
Yamamoto et al., 2018). Remarkably, two novel AMPs (AA139
and SET-M33) with similar MOA as colistin are currently in
development and have shown excellent therapeutic potential
both in vitro against several MDR gram-pathogens and in-vivo
in animal disease models (van der Weide et al., 2019). AA139
is a 21-amino acid amphipathic peptide with reduced cytotoxic
and hemolytic activity. It was designed from arenicin-3, a
peptide with potent microbicidal activity against several MDR
bacterial strains and isolated from the marine lugworm
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Arenicola marina (Sierra et al., 2017; Wang et al., 2018). SET-
M33 is a synthetic AMP exhibiting potent microbicidal activity
against gram-negative bacteria through membrane disruption
and an excellent candidate for in vivo application, as
evidenced from animal models of infectious diseases having
both anti-inflammatory and immunomodulatory activities
(Brunetti et al., 2016b; Falciani et al., 2012; van der Weide et
al., 2017).

Several AMPs with potent activity against gram-positive and
gram-negative MDR and showing excellent prospects as
therapeutic agents have also been isolated and characterized
from marine animals (Destoumieux-Garzón et al., 2016; Tincu
& Taylor., 2004). For example, mytimacin-AF, an 80-cysteine-
rich amino acid residue isolated from marine mollusks, shows
potent activity against both gram-positive and gram-negative
bacteria, especially against nosocomial pathogens S. aureus
and K. pneumoniae (MIC<2 μg/mL) (Zhong et al., 2013). EC-
hepcidin3, cloned from marine fish Epinephelus coioides, is a
novel cysteine-rich AMP with rapid and potent microbicidal
activity against S. aureus and Pseudomonasstutzeri (MIC<
3 μmol/L) (Qu et al., 2013). Tachyplesins, a class of peptides
isolated from horseshoe crab hemocytes, are cationic β-
hairpin structured peptides with potent antimicrobial activities
against MDR gram-negative and gram-positive bacteria at low
concentrations (Falanga et al., 2016; Liu et al., 2018;
Nakamura et al., 1988), although with increasing hemolytic
and cytotoxic activity at higher levels (Edwards et al., 2017;
Liu et al., 2018; Ohta et al., 1992).

Continued research on AMPs has yielded a new class of
highly potent peptides called "Selectively Targeted AMPs"
(STAMPs), which demonstrate increased sensitivity to target
pathogens without harming normal flora and increased
bacterial killing potency and kinetics (Chung & Khanum,
2017). Such AMPs have been designed to target pathogens
through specific determinants followed by selective killing
(Sarma et al., 2018). Notable STAMPs include synthetic
peptide M8(KH) -20, a multi-headed peptide specifically
targeting and potently killing P. aeruginosa and Streptococcus
mutans in vitro with very little effect on other pathogens (He et
al., 2009). Oritavancin, another synthetic STAMP designed
from the naturally occurring glycopeptide chloroeremoycin and
currently in clinical development, is reported to be highly
selective and potently kills MDR pathogens such as methicillin-
resistant S. aureus and vancomycin-resistant S. aureus
(VRSA) more rapidly than vancomycin through membrane
permeabilization and inhibition of cell wall synthesis (Allen &
Nicas, 2003; Chung & Khanum, 2017).

CHALLENGES FACING EXPLOITATION OF AMPs AS

THERAPEUTIC AGENTS AND SOLUTION STRATEGIES

To be considered for approval as a therapeutic agent, effective
AMPs need to show broad-spectrum activity, high selectivity
for bacterial pathogens, and low cytotoxicity on mammalian
cells (Dathe & Wieprecht, 1999). Currently, various AMPs are
under clinical trial; however, several factors curtail their full

utilization and approval as antibiotic alternatives (Falanga et
al., 2016; Lombardi et al., 2019; Wang et al., 2016). The main
factor limiting the systemic application of AMPs is their
sensitivity to proteolytic digestion. For instance, host
proteolytic enzymes in intestinal mucosa, gastrointestinal
tract, and blood plasma can readily degrade antimicrobial
peptides, which negatively impacts their in vivo stability and
pharmacokinetics (Moncla et al., 2011; Starr & Wimley, 2017).
Therefore, as a result, many AMPs are limited to topical
application rather than oral or intravenous administration.
Moreover, studies have demonstrated that, as a defensive
mechanism in the presence of AMPs, certain bacteria will up-
regulate the secretion of proteolytic enzymes and
metalloproteases (MMPs) that can partially or completely
degrade AMPs (Lai et al., 2007; Sieprawska-Lupa et al.,
2004).

Toxicity and efficacy of AMPs is another major drawback of
their use. Several AMPs have adverse side effects in vivo,
which limits their use to topical application only (McPhee &
Hancock, 2005). Moreover, in addition to the low correlation
between in vitro- and in vivo-based results in some cases,
physiological conditions such as high salt concentration and
serum components can negatively affect the antimicrobial
activity of many AMPs (Cantisani et al., 2014; de Breij et al.,
2018; Han et al., 2016). For most AMPs, antimicrobial activity
is dependent on the electrostatic interactions between
positively charged peptides and negatively charged plasma
membranes (Guilhelmelli et al., 2013). Such interactions can
be affected by elevated salt levels or binding of AMPs to
serum components (e. g., lipoproteins) (Li et al., 2017).
Therefore, efficacy screening of AMPs under different
physiological conditions and in the presence of host
components is necessary to affirm their activity.

Compared to conventional antibiotics, AMPs are also
expensive to produce. Therefore, current efforts are being
directed at designing shorter peptides with reduced side
effects and improved stability under different physiological
conditions (Kim et al., 2013; Zhao et al., 2015). For example,
Li et al. (2017) pioneered an important strategy for designing
AMPs with trypsin inhibitor activity based on a peptide isolated
from the frog Odorrana grahami.

Although AMPs have a low likelihood to select for
resistance, reports already exist detailing the development of
resistance against some AMPs (Andersson et al., 2016;
Omardien et al., 2016); for example, the development of
resistance to colistin by A. baumannii following long-term
clinical application (Jeannot et al., 2017; Liu et al., 2016).
Colistin is a last-resort drug used for the treatment of MDR
nosocomial pathogens, and thus resistance to colistin is an
important clinical issue (Liu et al., 2016; MacNair et al., 2018;
Paterson & Harris., 2016). Several mechanisms have been
reported to be responsible for resistance to AMPs, including
expression of efflux pumps, surface charge modification to
impede membrane-peptide electrostatic interactions, and
increased secretion of proteolytic enzymes (Andersson et al.,
2016; Bechinger & Gorr, 2017; Morita et al., 2012). For
example, S. aureus can alter surface charge by adding basic
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amino groups from D-alanine from the cytoplasm to teichoic
acid on the membrane surface (Peschel et al., 1999).
Resistance to AMPs also raises other critical issues such as
the potential development of cross-resistance to antibiotic
regimens and host AMPs (Conlon, 2015; Kubicek-Sutherland
et al., 2017), which could create unprecedented detrimental
consequences.

Presently, studies are focusing on developing strategies to
improve the efficacy of AMPs in vivo, enhance selectivity for
microbial cells while reducing cytotoxicity, increase stability,
and minimize proteolytic degradation. Chemical modifications
such as the addition of D-amino acids, cyclization, or
acetylation are important strategies used to improve the
stability of AMPs and reduce sensitivity to proteolytic
degradation (Gao et al., 2018; Zhao et al., 2016). However,
additional modifications add to production costs. To solve this,
efforts are currently being directed at the design and synthesis
of shorter peptides with increased potency and stability and
reduced toxicity (Jin et al., 2016; Kim et al., 2013).

The use of delivery systems is another important strategy
for improving the stability and efficacy of AMPs (Nordström &
Malmsten, 2017). Of particular interest is the use of
nanocarriers, which are designed and covalently attached to
AMPs to prevent self-aggregation, improve chemical stability,
and release profiles of AMPs to target sites. Importantly, such
nanocarriers are synthesized from materials that are easily
biodegradable, including lipids (such as triglycerides and
cholesterol) and polymers such as gels, cellulose, and fiber
(D'angelo et al., 2015; Mahlapuu et al., 2016; Yüksel et al.,
2016).

FUTURE PROSPECTS AND CONCLUSIONS

In this review, we reiterated the importance of AMPs as
potential next-generation antibiotics to mitigate a wide array of
microbial infections, including those caused by MDR strains.
Natural and synthetic AMPs are unique and exhibit boundless
therapeutic potential. Remarkably, AMPs display diverse
MOA, with a low tendency to select for resistance, rapid killing
ability, and multifunctional activities, thus conferring great
advantages over empirical antibiotics. Extensive research on
the origin, structure, and biological properties has improved
our understanding and use of AMPs. Of particular importance
is the potential of these peptides to act as templates and
precursor molecules for the development of novel anticancer
and antimicrobial agents for bacterial, fungal, and viral
infections where most available therapies have been rendered
ineffective due to the rapid emergence and spread of
resistance. Furthermore, these studies allow for the
generation of models mimicking the interaction of these
peptides with biological membranes, a key element in their
microbicidal activity. Such insight is important in the design
and synthesis of AMPs with increased potency against MDR
strains and improved chemical stability.

Presently, substantial effort is being dedicated to the design
and synthesis of shorter peptides with improved therapeutic

activity and reduced cytotoxicity. Such efforts are bearing fruit,
as evidenced in the presence of short synthetic AMPs with
potent and rapid microbicidal activity against several MDR
pathogens, even those showing resistance to last-resort
drugs, thus presenting hope in the war against multidrug
resistance.
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