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ABSTRACT

Recent advances in avian transgenic studies
highlight the possibility of utilizing lentiviral vectors as
tools to generate transgenic chickens. However, low
rates of gonadal chimerism and germ line
transmission efficiency still limit the broad usage of
this method in creating transgenic chickens. In this
study, we implemented a simple strategy using
modified lentiviral vectors targeted to chicken
primordial germ cells (PGCs) to generate transgenic
chickens. The lentiviral vectors were pseudotyped
with a modified Sindbis virus envelope protein
(termed M168) and conjugated with an antibody
specific to PGC membrane proteins. We
demonstrated that these optimized M168-
pseudotyped lentiviral vectors conjugated with
SSEA4 antibodies successfully targeted transduction
of PGCs in vitro and in vivo. Compared with the
control, 50.0%-66.7% of chicken embryos
expressed green fluorescent protein (GFP) in
gonads transduced by the M168-pseudotyped
lentivirus. This improved the targeted transduction
efficiency by 30.0%—46.7%. Efficient chimerism of
exogenous genes was also observed. This targeting
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technology could improve the efficiency of germ line
transmission and provide greater opportunities for
transgenic poultry studies.
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INTRODUCTION

Germ-line insertion of viral DNA by injection of recombinant
avian leukosis virus (ALV) into chicken blastoderms was first
described by Salter et al. (1986, 1987). Thereafter, transgenic
chickens were generated by injecting replication-defective
retroviral vectors into chicken embryos (Bosselman et al.,
1989). Retroviruses have been widely used in gene editing
and in creating genetically modified chickens. Lentiviruses,
which are a kind of retrovirus, can deliver genes into both
dividing and non-dividing cells. However, because of
nonspecific transduction, the efficiency of using lentiviruses to
prepare gonadal chimeric transgenic chickens is low, leading
to low efficiency of transgenic progeny production (Cooper et
al., 2019). To solve this problem, we adopted targeted
transduction by pseudotyping viral vectors with an alternative
envelope protein.

Several approaches to change viral tropism have been
explored, e.g., inserting ligands (Boerger et al., 1999;
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Kasahara et al., 1995; Valsesia-Wittmann et al., 1996),
peptides (Bupp et al., 2005; Sarangi et al., 2007), or single-
chain antibody fragments that recognize and bind to specific
cell-surface molecules (Ahani et al., 2016; Aires Da Silva et
al., 2005). However, these methods can suffer from low viral
titers and fusion efficiencies after changes to the viral
envelope. Therefore, it is important to develop new and
improved methods of targeting specific cells with lentiviruses.

The Sindbis virus, a member of the Alphavirus genus,
contains two transmembrane envelope proteins, E1 and E2,
which form a trimer of E1/E2 heterodimers that function as a
unit. However, the E1 protein can mediate the fusion of
viruses with cells, independent of the receptor-binding protein
E2 (Smit et al., 1999). Lentiviral vectors can be pseudotyped
with Sindbis virus E2 envelope proteins modified by inserting a
protein A immunoglobulin G recognition domain (ZZ domain),
which enables them to bind to monoclonal antibodies that
recognize surface antigens of specific cells (Morizono et al.,
2001). However, the research showed that the infectivity of the
viruses to liver and spleen cells remained high when
intravenously injecting ZZ SINDBIS pseudotypes into mice.
Thereafter, this method was improved by mutating several key
sites of ZZ SINDBIS (M168), which reduced the endogenous
tropism of the Sindbis envelope and allowed more viruses to
infect the target cells (Morizono et al.,, 2005). Recent
successful improvements to this lentiviral targeting system
enabled it to recognize its target cells by conjugated
antibodies (Allen et al., 2018; Gruell & Klein, 2018; Mason et
al., 2016). In the current study, we employed a transduction
system that allows entry of M168-pseudotyped lentiviruses
into primordial germ cells (PGCs) by conjugating the viruses
with the antibody that recognizes SSEA4, a surface molecule
of PGCs. We provide a new and feasible method for
generating transgenic chickens by improving the efficiency of
transgenic-positive chicken production.

MATERIALS AND METHODS

Monoclonal antibodies

Immunofluorescence staining of PGCs and antibody-mediated
targeted transduction of PGCs were performed using the
following primary antibodies: anti-SSEA1 (Abcam, MC-480,
UK), anti-SSEA3 (Abcam, MC-631, UK), anti-SSEA4 (Abcam,
MC-813, UK), anti-EMA1 (Abcam, GP1.4, UK), and anti-DAZL
(Abcam, EPR21028, UK). Secondary antibodies used were
Alexa Fluor 488 goat anti-mouse IgM, Alexa Fluor 594 goat
anti-rabbit, and goat anti-mouse antibodies (Invitrogen,
Thermo Fisher Scientific, USA). Mouse anti-human HLA-ABC
(Sigma, HLA class I, clone W6/32, USA) was used to mediate
the targeted infection by lentiviruses and in flow cytometry
analysis.

Lentivirus production

All lentiviral particles were produced in HEK 293T cells using
FUGENE® HD (Promega, PRE2311, USA) transfection
reagents. The HEK 293T cells (1.8x107) were transfected with
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either three (pWPXL, psPAX2, VSV-G or M168) or four
plasmids (FUGE, pMDLg-pRRE, pRSV-Rev, VSV-G or M168)
to produce lentiviruses. The vesicular stomatitis virus
glycoprotein (VSV-G)-pseudotyped lentivirus, which has a
wide range of host cell receptors, thus allowing transfection of
most cell types, was used as a control. The viral particles were
harvested from the culture medium after 48 h of incubation
and then filtered through a 0.45 pm filter. The filtered viral
particles were centrifuged at 25 000 g for 8-9 h at 4 °C and
then centrifuged at 50 000 g for 2 h at 4 °C. The viral particles
were then resuspended in virus storage buffer and stored at
-80 °C. Lentiviral titers were assayed using HIV-1 p24 ELISA
Kits (XpressBio, USA) following the manufacturer’s
instructions. The M168 plasmid was provided by the lab of Dr.
Irvin S.Y. Chen (University of California, USA); other plasmids
were purchased from the Addgene website.

Lentivirus transduction of HEK 293T and BHK fibroblast
cells

Different amounts of M168-lentiviruses were incubated with 1
pg of HLA antibody for 1 h on ice prior to infection. The same
quantities of VSV-G lentiviruses were used as a control. HEK
293T cells (0.5%10%) were infected with these vectors for 48 h
at 37 °C with 5% CO,. Transduction efficiency was detected
via green fluorescent protein (GFP) expression in target cells
using flow cytometry 2 d after infection.

A mixed population of HEK 293T cells and BHK fibroblast
cells (ratio of 1:1) were infected with HLA-M168 lentiviruses or
VSV-G lentiviruses for 8 h at 37 °C with 5% CO,. The viruses
were subsequently removed and replaced with 1 mL of DMEM
supplemented with 10% fetal bovine serum (FBS), and the
cells were cultured for another 48 h at 37 °C with 5% CO.,.
After infection, the percentage of GFP-positive cells was
measured by flow cytometry. Real-time polymerase chain
reaction (RT-PCR) was performed using primers: GFP-F:
AAACGGCCACAAGTTCAGCG and GFP-R: ATGGTG
CGCTCCTGGACGTA; GAPDH-F: GGAGCGAGATCCCTCC
AAAAT and GAPDH-R: GGCTGTTGTCATACTTCTCATGG.

Derivation and analysis of PGCs from white leghorn
chickens

Freshly fertilized white leghorn eggs were obtained from the
China Agricultural University and incubated at 37 °C and
60%—70% humidity, with rocking at an angle of 90° every 30
min for 6 d, after which the embryos were isolated (Song et
al., 2014). After the embryos were rinsed with PBS, they were
dissected, and the gonads were separated from the medial
section of the abdomen with sharp tweezers under a stereo
microscope (Leica, SMZ 1000, Germany). The gonadal
tissues were dissociated with 0.25% trypsin (Gibco, 25200,
USA) for 10-15 min at 37 °C, and the reaction was stopped by
the addition of 10% FBS (Gibco, 10099, USA). The cell
suspension was centrifuged at 500 g for 5 min at 25 °C, and
then the cells were seeded into a 48-well culture plate
previously coated with buffalo rat liver (BRL) cells. The cells
were cultured in DMEM supplemented with 7.5% FBS, 2.5%
chicken serum, 46% knockout-DMEM, 40% BRL-condition



medium, 1xNEAA, 1 mmol/L Sodium Pyruvate, 0.5 mmol/L
GlutaMAX, 1% penicillin-streptomycin, 0.1 mmol/lL B-
mercaptoethanol, 4 ng/mL rhFGF (R&D, 234-FSE, USA), and
6 ng/mL rmSCF (R&D, 455-MC/CF, USA). The culture
medium was changed every 2 d, and the cells were passaged
on day 7 and every 3—4 d thereafter. All cell culture reagents
were purchased from Gibco.

To analyze PGCs, immunohistochemistry and RT-PCR
were performed. The cultured PGCs were fixed with 4%
paraformaldehyde for 30 min, rinsed twice with PBS and
blocked with a blocking reagent for 1 h. The cells were then
incubated with a primary antibody overnight at 4 °C. After
washing with PBS twice, the cells were incubated with the
secondary antibody at 25 °C in the dark for 30 min and then
washed with PBS three times. The cells were incubated with
DAPI for 2 min under the same conditions described above.
The treated cells were observed under an inverted microscope
(Nikon, TS100, Japan).

Total RNA was isolated from cells using a RNeasy Mini Kit
(Qiagen, 74104, Germany), and then cDNA was synthesized
according to the instructions of the Reverse Transcription
System (Qiagen, 205311, Germany). The RT-PCR
amplification conditions were as follows: 94 °C for 5 min,
followed by 35 cycles (94 °C for 30 s, 58 °C for 30 s, 72 °C for
30 s) and one cycle at 72 °C for 7 min. The sets of primers
were: CVH-F: GCTCGATATGGGTTTTGGAT and CVH-R:
TTCTCTTGGGTTCCATTCTGC; Actin-F: AACACCCAGCCA
TGTATGTA and Actin-R: TTTCATTGTCTAGTGCCA.

Targeted infection of PGCs in vitro

Flow cytometry was used to analyze the cell surface markers
commonly found on PGCs: i.e., SSEA1, SSEA4, and EMA1.
The PGCs (1x10°) were then incubated with M168-lentiviruses
conjugated with the specific antibody for 8 h at 37 °C. Control
cells were infected with VSV-G lentiviruses. The expression of
GFP was detected by fluorescence microscopy.

Targeted infection of chicken gonads in vivo

Following the surrogate eggshell method (Perry, 1988), we
microinjected 1-2 uL of SSEA4 M168 lentiviruses (1 pg of
virus normalized to levels of p24 incubated with 1 pg of
SSEA4) into the sub-germinal cavity beneath the blastoderm,
after which the embryos were placed into surrogate eggshells
and incubated for 3 d. The embryos were then transferred into
new, larger surrogate eggshells until they hatched.

To confirm the targeted infection of gonads, we isolated
heart, liver, gizzard, kidney, gonad, and muscle tissue from
the chicken embryos incubated for 6-10 d, and then observed
them under a microscope (Nikon, TS100, Japan). DNA was
extracted from each tissue sample using HiPure Tissue DNA
Mini Kits (Magen, D3121, USA), and PCR was performed with
2xTaq MasterMix (CWBIO, CW0682, China). The following
primers were used: GWPRE-F: TCACATGGTCCTGCTGGA
GT and GWPRE-R: GGGCCACAACTCCTCATAAAG.

Flow cytometry
Flow cytometry was performed with a FACSCalibur platform

(Becton Dickinson, USA). The data were analyzed using
FlowJo 10 software.

Ethics approval

All applicable international, national, and institutional
guidelines for the care and use of animals were strictly
followed. All animal sample collection protocols complied with
the current laws of China. All animal procedures performed in
this research were in accordance with the ethical standards of
the Animal Welfare Committee of China Agricultural
University, where the study was conducted (permit No.:
SKLAB-2014-06-01).

RESULTS

M168-pseudotyped lentivirus production

As lentiviruses pseudotyped with a Sindbis envelope M168
can target specific cells for infection via conjugated antibodies
(Morizono et al., 2005), we used these modified lentiviral
vectors to generate transgenic chickens. The VSV-G-
pseudotyped lentivirus control used in this study has become
a benchmark for assessing the efficiency of transduction by
other viral envelope pseudotypes (Mochizuki et al., 1998;
Reiser et al.,, 1996). Lentiviral packaging systems mainly
include systems with three or four plasmids. Therefore, we
examined which packaging system would generate M168-
pseudotyped viruses with the highest transduction efficiency
(Figure 1A), measured by GFP expression. The VSV-G-
pseudotyped viruses produced with four plasmids transduced
36.8% of 293T cells, less than the three-plasmid system,
which had a transduction efficiency of 68.7% (Figure 1B and
Supplementary Figure S1). The three-plasmid system similarly
showed higher transduction efficiency for the M168-
pseudotyped lentiviral vectors conjugated with HLA antibodies
(Figure 1B and Supplementary Figure S1). A small amount of
background infection in the non-antibody group was also
observed. Therefore, the GFP-expressing M168-pseudotyped
viruses generated by the three-plasmid packaging system
were used in subsequent experiments.

As the ratios of the three plasmids in the viral packaging
system could influence the production of viral particles, we
next aimed to maximize viral particle assembly in the 293T
cells. The ratios of the three plasmids (GFP-expressing vector
pWPXL, lentivirus packaging plasmid psPAX2, and M168
envelope protein-expressing plasmid) were adjusted. The viral
amounts were normalized to the levels of HIV-1 capsid protein
p24. The most viral particles were obtained using a three-
plasmid ratio of 1:2:1, with a total of 10 ug of plasmids used to
package the virus (Figure 1C). This ratio was therefore used
for further lentiviral production.

Optimization of gene transduction

pseudotyped lentiviral vectors in 293T cells
Poor viral transgene expression was observed in the 293T
cells infected by the M168-pseudotyped lentiviruses
conjugated with HLA antibodies. Therefore, we adjusted the
transduction conditions to increase viral infection and

using M168-
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therefore transgene expression in 293T cells. Different
concentrations of M168-pseudotyped viral particles
conjugated with 1 pg of HLA antibodies were used to
transduce 293T cells. Fluorescence microscopy
(Supplementary Figure S2) and flow cytometry (Figure 2A)
were used to compare GFP expression to assess the
efficiency of gene transduction. The cells transduced with
VSV-G lentiviruses showed strong GFP expression in a dose-
dependent manner; 1 pg of M168-pseudotyped viruses

A

(normalized to p24 amount) conjugated with 1 pg of anti-HLA
generated maximal GFP expression. Due to the saturation of
antibody and virus conjugation, no significant differences in
GFP expression were found between the cells infected with 2
Mg or with 1 pg of M168 virus normalized to p24 amount.
Similar results were observed using flow cytometry (33.7%
GFP* and 33.6% GFP*) and RT-PCR analyses (Figure 2A, B).
Subsequently, 1 pg of viral particles normalized to p24
amount, conjugated with 1 pg of antibody, was used.
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Figure 1 Production of M168-pseudotyped lentivirus

GFP

A: Lentiviral packaging systems were used for optimization of lentivirus production. VSV-G and M168 pseudotypes produced with three- and four-
plasmid packaging systems are labeled as P3V, P3M, F4V, and F4M, respectively. B: Flow cytometry was used to detect GFP expression to assess
transduction efficiency of different viruses after 2 d of infection. 293T cells (1x10°%) were infected with 1 ug p24 of P3M or F4M viruses with or
without 1 pg of HLA antibody. Same amounts of P3V and F4V viral particles were used as controls. C: Ratios of plasmids (pWPXL, psPAX2, and
VSV-G or M168) were adjusted to optimize conditions of virus production in 293T cells. Resulting virus stocks were titrated by p24. Data are shown
as meanzstandard deviation (SD). Values followed by same letter are not significantly different. Uppercase letters indicate significant differences at

P<0.01. Lowercase letters indicate significant differences at P<0.05.
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Targeted transduction of 293T cells via antibody-
conjugated M168-pseudotyped lentiviral vectors

To investigate whether the M168-pseudotyped lentiviral
vectors were able to specifically transduce 293T cells via the
specific monoclonal antibody, HLA-ABC expression in 293T
and BHK cells was analyzed. Flow cytometry results showed
that 98% of 293T cells expressed HLA-ABC, and <1% of BHK
cells were labeled with HLA antibodies (Supplementary
Figure S3). We next determined whether transduction of 293T
cells could be targeted using the M168-pseudotyped lentivirus
conjugated with anti-HLA. Briefly, 293T cells, BHK cells, and a
mixed population of the two cell types were transduced
overnight with M168 or VSV-G lentiviruses. After 2 d, the cells
were analyzed by HLA-ABC staining, followed by flow
cytometry. The VSV-G lentiviruses transduced both 293T and
BHK cells with efficiencies of 57.6% and 58.4%, respectively
(Figure 3B). In contrast, lentiviral vectors pseudotyped with
M168 and conjugated with HLA antibodies specifically infected
293T cells, but not BHK cells. These transduction results were
similar to those obtained by fluorescence microscopy
(Figure 3A). Thus, M168-pseudotyped lentiviruses could infect
target cells under mediation of specific antibodies.

Derivation, culture, and characterization of PGCs

To further study the targeted infection efficiency of antibody-
conjugated M168 lentiviruses, we first isolated gonads from
5.5- to 6-day-old chicken embryo (E5.5-E6) kidneys and
cultured PGCs as described in the Materials and Methods
(Figure 4A). The newly separated PGCs displayed a round
morphology with a diameter of about 20 pm and were clear

A VSV-G

T0ng
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B
M168-Anti HLA VSV-G

S &
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M 0 RSP
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Figure 2 Optimization of gene transduction using M168-pseudotyped lentiviral vectors

A: Flow cytometry was used to detect GFP expression after 48 h of viral infection. Different concentrations of viral particles were used to infect
1x10° 293T cells; VSV-G lentiviruses were used as the control. A greater percentage GFP-positive cells was obtained when infected with 1 ug p24
of M168 lentiviruses conjugated with 1 pg of HLA antibody. B: RT-PCR was used to analyze expression of GFP in infected cells. PC: Positive
control.

with bright edges (Figure 4B). After 8 d of cultivation, the cells
clustered and grew in the suspension (Figure 4C). One of the
markers specifically expressed in the germ cells was the
chicken vasa homolog (CVH), which is typically used to
characterize PGCs (Tsunekawa et al.,, 2000). RT-PCR
analysis showed the expression of CVH in PGCs, but not in
DF-1 cells (Figure 4C). Moreover, PGCs expressed surface
markers of pluripotent stem cells, such as SSEA1, SSEAS3,
and SSEA4, and germ cell marker DAZL. The antibodies
SSEA1, SSEA3, and SSEA4 are known to specifically bind to
chicken PGCs (Jung et al.,, 2007; Raucci et al., 2015).
Immunofluorescence staining showed that the PGC
membranes were positively stained by SSEA1, SSEAS3,
SSEA4, and DAZL antibodies (Figure 4D). Therefore, we
successfully derived PGCs from chicken gonads and
characterized them with germ cell and pluripotent cell
markers.

Targeted transduction of PGCs by M168-pseudotyped
lentiviral vectors in vitro

Once we established the system for specific transduction of
293T cells using HLA-mediated targeted infection, we next
investigated whether we could achieve specific transduction of
PGCs with M168-pseudotyped lentiviruses via mediation of a
specific monoclonal antibody. Flow cytometry was used to
detect three cell surface markers commonly expressed in
PGCs: i.e., SSEA1 (65.9%), SSEA4 (43.2%), and EMA1
(5.12%; Figure 5A). Transduction efficiency was determined
by GFP expression of the infected PGCs (Figure 5B). As a
control, GFP expression was detected in PGCs and BRL
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71000 ng
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feeder cells transduced with VSV-G-pseudotyped lentiviruses.
Although GFP expression was detected in both PGCs and
BRL cells infected with VSV-G lentiviruses, only PGCs
expressed GFP after infection of M168 lentiviruses conjugated
with the SSEA4 antibody. Fluorescent counting was used to
quantify successfully transduced PGCs. The infection rate of

>

293T BHK

293T+BHK

VSV-G No infection

M168-Anti HLA

PGCs by SSEA4-mediated M168-pseudotyped lentiviruses
was 7.5%, which was substantially higher than the 1.7%
infection rate found for VSV-G lentiviruses (Supplementary
Figure S4). We also found that the SSEA4-mediated M168-
pseudotyped lentiviruses only transfected PGCs, not DF-1 or
feeder cells (Supplementary Figure S5). As the ZZ domain
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Figure 3 Targeted transduction of M168-pseudotyped lentiviruses conjugated with anti-HLA in mixed population of 293T and BHK cells
GFP expression was analyzed by fluorescence microscopy (A) and flow cytometry (B) after infection with anti-HLA-conjugated viral particles. HLA-
M168 lentiviruses infected 293T cells, but not BHK cells. Scale bars: A=400 um.

A

2 mm

PGC

Figure 4 Culture and characterization of PGCs

20 pm

A: Picture of gonads attached to the middle of kidney. *: Gonad. B: Morphology of PGCs cultured on a feeder layer of BRL cells at 4 and 8 d,
respectively. C: RT-PCR was used to detect CVH expression in PGCs and DF-1 cells. M: Marker. D: Immunofluorescence staining was used to
detect cell markers expressed on membrane of PGCs: stage-specific embryonic antigen-1 (SSEA1): stage-specific embryonic antigen-3 (SSEA3):
stage-specific embryonic antigen-4 (SSEA4); and deleted-in-azoospermia-like (DAZL), germ cell marker. Scale bars: A=2 mm; B=400 pym; D=

20 ym.
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was inserted into the modified Sindbis virus E2 envelope
protein, the predominant antibody molecule it binds to is IgG.
Therefore, the IgM antibody of SSEA1 was not effective as a
means of targeted infection, although more PGCs were
positive for SSEA1 than for SSEA4 (Figure 5A, B). These
results indicated that M168-pseudotyped lentiviral particles
conjugated with the SSEA4 antibody could be used to
transduce target PGCs in vitro.

Targeted transduction of PGCs by M168-pseudotyped
lentiviral vectors in vivo

We injected M168 lentiviruses conjugated with SSEA4
antibodies into the subgerminal cavity beneath the blastoderm
of chicken embryos using the surrogate eggshell method to
target PGCs for infection. We observed the expression of GFP
in developing embryos via fluorescence microscopy. Results
showed that the VSV-G lentiviruses infected various chicken
embryo tissues to different degrees, and the M168 lentiviruses
bearing SSEA4 antibodies induced a higher level of GFP
expression in the gonads. This is a possible consequence of a
lower rate of nonspecific infection (Figure 6A). Six tissues (i.e.,
heart, liver, kidney, muscle, gizzard, and gonad) were isolated
from the embryos and then analyzed using PCR. We found
that the M168-pseudotyped lentiviruses conjugated with
SSEA4 antibodies targeted the gonads for infection more

(Figure 6B). Statistical analysis showed that more than 62.5%
of embryos obtained by VSV-G-pseudotyped lentivirus
infection were chimeric, but only 20% were gonadal chimeras.
However, the percentage of gonadal chimeras obtained by
M168-pseudotyped lentivirus infection was 50.0%—66.7%,
which improved upon the rate of VSV-G lentiviruses by
30.0%—46.7% (Table 1). Therefore, M168-pseudotyped
lentiviruses conjugated with SSEA4 antibodies can efficiently
target PGCs for transfection in vivo, resulting in an increased
rate of gonadal chimerism.

DISCUSSION

At present, many strategies have been used to produce
transgenic chickens. Lentiviruses and PGCs appear to be the
most effective and widely used tools (Collarini et al., 2019;
Kwon et al.,, 2018). Compared with lentiviral approaches,
considerable progress has been made with the use of PGCs
in recent years (Han et al., 2017). PGCs are precursor cells
that can develop into spermatozoa and ova. They first appear
in the X stage of chicken embryo development, then migrate
to the germinal ridges through the vascular system. The
establishment of in vitro culture technology has enabled
genetic modification and screening. Recently, transcription
activator-like (TAL) effector nucleases (TALENs) have been

specifically than the VSV-G-pseudotyped lentiviruses successfully used in chicken PGCs for the introduction of
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Figure 5 Targeted transduction of PGCs by M168-pseudotyped lentiviral vectors in vitro
A: Flow cytometry was used to analyze expression of SSEA1, SSEA4, and EMA1 in PGCs. B: M168 lentiviruses conjugated with SSEA4 antibody
targeted infection to PGCs; VSV-G lentiviruses were used as a control. Scale bars: 400 ym.
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subtle mutations and gene targeting (Glover et al., 2013; Lee The rate of chimeric embryo production is not stable under

et al., 2016; Park et al., 2014; Taylor et al., 2017). However, the lentiviral method; the positive rate in our group is less than

the long-term culture and stable transfection of PGCs, as well 1% (Cao et al.,, 2015; Liu et al., 2015). Other researchers

as embryo infection, require proficient skills and high costs. show positive rates of G1 transgenic chickens of only
] |

Embryo | | Gizzard | | Kidney | | Gonad | | Intestine

VSV-G

M168-SSEA4

B
M168 #1 M168 #2 VSV-G #1
GWPRE - 332bp
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Figure 6 Targeted transduction of PGCs by M168-pseudotyped lentiviral vectors in vivo

A: Fluorescence microscopy was used to observe expression of GFP in chicken embryos. Scale bars: 2 mm. B: PCR was used to analyze chimeric
embryos. DNA was extracted from heart (H), liver (L), kidney (K), gonad (G), gizzard (Gi), and muscle (Ms) from SSEA4 antibody-conjugated M168-
lentivirus-infected embryos (M168 #1 and M168 #2); VSV-G-pseudotyped lentivirus-infected embryos (VSV-G #1, VSV-G #2, and VSV-G #3); and
wild-type embryos (WT). PC: Positive control.
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0.3%—2.1% (Cooper et al., 2019). Therefore, we designed this
study using M168-pseudotyped lentiviral vectors conjugated
with specific antibodies to target PGCs for in vivo infection in
order to improve the chimerism of gonads and the production
of transgenic chickens.

A number of strategies for targeted infection of cells by
lentiviruses have been reported in the past few years,
including the use of lentiviral vectors pseudotyped with
envelope proteins of other viruses whose natural tropisms
include the target cell type (Girard-Gagnepain et al., 2014;
Palomares et al., 2013), or genetic fusion of a cell-binding
protein (Buchholz et al., 2015; Kasaraneni et al., 2017). The
mutant Sindbis envelope glycoprotein M168 was obtained
through the insert of the ZZ domain (IgG binding domain of
protein A) and the introduction of several mutations which
inactivate the receptor binding sites (Morizono et al., 2005).
M168 is widely used in lentiviral vector pseudotyping and
produces high-titer viruses that are stable to ultracentrifugation
and freeze-thaw cycles (Morizono et al., 2001; Smit et al.,
1999). In this study, we tested different conjugation ratios of
viral particles and antibodies to optimize the delivery of
transgenes to specific cells using M168. We showed that 1 ug
of viral particles normalized to p24 levels, conjugated with 1
ug of antibody, was the optimal ratio. Hamster BHK cells are
HLA antigen-negative and are therefore ideal negative
controls for studying targeted infections mediated by HLA
antibody-conjugated M168 lentiviruses. We demonstrated that
our system could achieve targeted infection in a mixed
population of 293T and BHK cells.

One of our main objectives was to explore the feasibility of
using antibodies to mediate lentiviral infections in order to
create transgenic chickens. Therefore, PGCs were first
collected from chicken gonads at E5.5-E6 days. The
embryonic stem cell-related markers SSEA1, SSEA3, SSEA4,
and DAZL, which are expressed in various undifferentiated
progenitor cells and germ cells (Durcova-Hills et al., 2008),
were also detected in our derived PGCs. RT-PCR analyses of
PGCs also showed CVH expression. Thus, our results
indicated that we successfully separated PGCs.

We next performed targeted infection of PGCs using
antibody-mediated M168 lentiviruses in vitro, with VSV-G
lentiviruses used as a control. We detected GFP expression in
both PGCs and BRL cells infected with VSV-G lentiviruses;
however, only PGCs expressed GFP after infection by M168
lentiviruses conjugated with SSEA4 antibody (Figure 5B). The

trimeric protein VSG-G is commonly used to pseudotype
lentiviral vectors; because of its extremely broad tropism, the
VSV-G lentivirus can transduce many cell types via binding to
phosphatidylserine and low-density lipoprotein receptors
(LDLR; Finkelshtein et al., 2013). Our study showed that the
infection efficiency of VSV-G lentiviruses was low in PGCs.
This may be related to its tendency toward nonspecific
infection, which is amplified in PGC culture, as many virus
particles infect feeder cells. The Sindbis virus, which is in the
Alphavirus genus, can be prepared at high titers, expresses
high levels of fusogenic proteins, and can fuse to cells
independently of receptor binding proteins (Smit et al., 1999).
Morizono applied lentiviral vectors pseudotyped with M168 to
target infection by binding to a monoclonal antibody that
recognizes surface antigens of specific cells (Morizono et al.,
2001). We achieved similarly successful results using M168-
pseudotyped lentiviruses conjugated with SSEA4 antibodies to
target PGCs.

However, because of competitive binding to the ZZ domain
between serum and recombinant monoclonal antibodies, and
the fact that the noncovalent bonds between antibody and
virus are easily broken, nonspecific infections are prone to
occur, thus lowering transduction efficiency (Morizono et al.,
2005; Wu et al., 2012). We observed similar results in our
experiments (Figures 2A, 3B, 5B). To reduce interference of
serum, we used the surrogate eggshell method to produce
transgenic chickens. Several methods have been developed
to optimize the binding of antibodies to viruses, such as
inserting a single-chain antibody fragment into the Sindbis
virus E2 protein (Aires et al., 2005); substituting envelope
proteins (Bender et al., 2016); adding biological agents
(Morizono et al., 2010); or using other affinity reagents, such
as streptavidin. The latter would be more suitable for in vivo
applications, where plasma antibodies exist (Situ et al., 2018).
The binding status of antibodies or ligands to antigens also
affects the efficiency of virus transduction. It has been
reported that efficient binding can be attained when viruses
conjugated with certain ligands target the membrane-distal
site of the HER2/neu receptor, while when the membrane-
proximal site of the same receptor is the target, it cannot
(Kasaraneni et al., 2018). Additionally, the E1 protein is a
structural protein of the Sindbis virus, and can effectively
promote envelope fusion with the endosomal membrane at
low pH, thereby enabling the virus to penetrate the cytoplasm
and thus improving virus transduction efficiency (Glomb-

Table 1 Rates of gonadal chimeric embryos after infection with VSV-G or M168

@No. of chimeric embryos

®No. of gonadal chimeric embryos
(% of total embryos)

Virus Experiment  No. of embryos at 6 d (% of total embryos)
VSV-G 1 8 5 (62.5)

2 15 10 (66.7)
M168 1 13 6 (46.2)

2 17 6 (35.3)

1(20)
2 (20)
3 (50)

4(66.7)

[&]

a: Any embryonic tissue expressing green fluorescence is categorized as a chimeric embryo. ®: Any gonadal expression of green fluorescence is

categorized as a gonadal chimeric embryo.
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Reinmund & Kielian, 1998). Efficient and targeted transduction
of primary B cells in non-fractionated peripheral blood cells
has been achieved by combining targeting vectors with low pH
treatment (Morizono et al., 2006). These results indicate that
precise pH manipulation can increase the efficiency of
targeted transduction in vitro.

In conclusion, the antibody-mediated lentivirus method was
used to successfully create transgenic chimera chicken
embryos by targeted infection of PGCs. A higher rate of
chimeric embryonic gonads was obtained using M168-
pseudotyped lentiviruses, which was 30.0%—46.7% greater
than that obtained using VSV-G-pseudotyped lentiviruses.
This finding will be of great significance in improving the
efficiency of germ-line transmission. Lentivirus-targeted
transduction has also developed into one of the most
important technologies in modern medicine for the treatment
of genetic diseases and various cancers (Barrett et al., 2014;
Lévy et al., 2015). Further improvement of this targeting
technology will promote applications not only in transgenic
research but also in clinical fields and disease therapy.
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